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Abstract. We show in this note that in the forcing extension by Add(ω,iω),

the following Ramsey property holds: for any r ∈ ω and any f : R→ r, there
exists an infinite X ⊂ R such that X + X is monochromatic under f . We also

show the Ramsey statement above is true in ZFC when r = 2. This answers
two questions from [8].

1. Introduction

Definition 1.1. Let (A,+) be an additive structure and κ, r be cardinals. Let
A →+ (κ)r abbreviate the statement: for any f : A → r, there exists X ⊂ A with
|X| = κ such that X +X =def {a+ b : a, b ∈ X} is monochromatic under f .

There have been recent developments on additive partition relations for real
numbers. Hindman, Leader and Strauss [5] showed that if 2ω < ℵω then there
exists some r ∈ ω such that R 6→+ (ℵ0)r. On the other hand, Komjáth, Leader,
Russell, Shelah, Soukup and Vidnyánszky [8] showed that relative to the existence
of an ω1-Erdős cardinal, it is consistent that for any r ∈ ω, R →+ (ℵ0)r. These
results are optimal in a sense as there exist the following restrictions:

(1) Komjáth [7] and independently Soukup and Weiss [11] showed that R 6→+

(ℵ1)2;
(2) Soukup and Vidnyánszky showed there exists a finite coloring of f on R

such that no infinite X ⊂ R satisfies that X + · · ·+X︸ ︷︷ ︸
k

is monochromatic

for k ≥ 3.

It should be emphasized that the difficulty comes from the fact that repetitions
are allowed. If we only want some infinite X ⊂ R such that X ⊕ X = {a + b :
a 6= b ∈ X} is monochromatic, then the classical Ramsey theorem implies this
already. In fact, Hindman’s finite-sum theorem is a much stronger Ramsey-type
statement: any finite coloring of N, there exists some infinite X ⊂ N such that
FS(X) =def {Σ0≤i<kai : {a0, a1, · · · , ak−1} ∈ [X]<ω} is monochromatic. However,
if repeated sums are allowed, things turn towards the other direction: Hindman [4]
showed N 6→+ (ℵ0)3 and Owings asked (and it is still open) that if N 6→+ (ℵ0)2 is
true. Interestingly, Fernández-Bretón and Rinot [3] showed that the uncountable
analogs of Hindman’s theorem must necessarily fail in a strong way.
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The following questions among others were asked by the authors of [8].

(1) Is the use of large cardinals necessary to establish the consistency R →+

(ℵ0)r for all r ∈ ω?
(2) Is R→+ (ℵ0)2 true in ZFC?

We answer the first question negatively and the second positively.

Theorem 1.1. (1) In the forcing extension by Add(ω,iω), R →+ (ℵ0)r for
any r ∈ ω.

(2) R→+ (ℵ0)2.

Remark 1.2. The continuum in the model of [8] is an ℵ-fixed point, which is very
large. Over a ground model of GCH, Theorem 1.1 suggests that the most natural
way to eliminate the obstacles from cardinal arithmetic works since by a result of
Hindman, Leader and Strauss [5], if R→+ (ℵ0)r for all r < ω, then 2ω ≥ ℵω+1.

Notation 1.3. We will identify (R,+), as a vector space over Q, with
⊕

i<2ω Q.
The latter is the direct sum of 2ω copies of (Q,+). More concretely, any s ∈⊕

i<2ω (Q,+) is a finitely supported function whose range is contained in Q. The
addition on the direct sum is defined coordinate-wise. Similarly for some cardinal
κ,

⊕
i<κN is the direct sum of κ copies of (N,+). It is easy to see that if κ ≤ 2ω,⊕

i<κN is an additive substructure of R.

2. The proof of Theorem 1.1

First we prove part (1). Let λ = iω and P = Add(ω, λ). In fact, we show that
in V P,

⊕
i<λN→+ (ℵ0)r for any r ∈ ω.

Definition 2.1. Suppose W,W ′ ⊂ λ are such that type(W ) = type(W ′). Let
hW,W ′ : W →W ′ be the unique order isomorphism. For A,A′ ⊂ λ with type(A) =
type(A′), hA,A′ naturally induces a map from P � A to P � A′ where any p ∈ P � A is

mapped to p′ ∈ P � A′ such that dom(p′) = h−1
A,A′(dom(p)) and p′(j) = p(h−1

A,A′(j)).
We will abuse the notation by using hA,A′ to denote the induced map from P � A
to P � A′. This can be easily inferred from the context.

Definition 2.2 ([6],[5],[8]). For any r ≥ 2, define a sequence of finite strings of
natural numbers 〈sl : l ≤ r〉 such that for each l ≤ r, |sl| = r + l and si(k) ={

2 if k < 2l

4 otherwise.
In other words, each sl is formed by 2l many 2′s followed by r − l

many 4′s.

Definition 2.3 (The star operation, see [6],[8]). Let K be either N or Q. For
k ∈ ω, s ∈ (K−{0})k and a finite subset of ordinals a = {ξi : i < k}< ⊂ λ, let s ∗a
denote the function from λ to K supported on a that sends ξi to s(i).

We will use the following combinatorial lemma due to Shelah [10], [9].

Lemma 2.4 (The higher dimensional ∆-system lemma). Fix r, d ∈ ω. Let 〈ḋi :
[λ]i → r|i ≤ d} be a sequence of P-names for colorings. Then there exists E ⊂ λ of
order type ω1 and W : [E]≤d → [λ]≤ℵ0 such that

CL.1 For all u ∈ [E]≤d, u ⊂ W (u) and P � W (u) contains a maximal antichain

deciding the value of ḋ|u|(u).
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CL.2 For any u, v ∈ [E]≤d such that |u| = |v|, type(W (u)) = type(W (v)),

hW (u),W (v)(u) = v and for any p ∈ P �W (u), for any n < r, p  ḋ|u|(u) =

n⇔ hW (u),W (v)(p)  ḋ|v|(v) = n.

CL.3 For any u, v ∈ [E]≤d, W (u) ∩W (v) = W (u ∩ v).
CL.4 For any u1 ⊂ u2, u

′
1 ⊂ u′2 where u2, u

′
2 ∈ [E]≤d, if (u2, u1, <) ' (u′2, u

′
1, <),

then hW (u2),W (u′2) �W (u1) = hW (u1),W (u′1).

Remark 2.5. Different versions of Lemma 2.4 appeared in [10], Lemma 4.1 of [9],
Claim 7.2.a of [1] and the appendix of [12]. We will use the fact that λ = iω to
present a slightly simpler proof, following the arguments presented in Claim 7.2.a
of [1]. More specifically, we will take advantage of the following fact: there exists
λ0 such that λ → (λ0)2d

2ω and λ0 → (ℵ1)2d
2ω . This statement is the only fact about

λ we will use in the proof. In fact, that λ → (ℵ1)2d
2ω suffices to get the conclusion

of Lemma 2.4 but the proof is slightly more complicated. The interested readers
are directed to the proofs in Claim 7.2.a of [1] (for CL.1,CL.2,CL.3) and in the
appendix of [12] (for CL.4).

Proof. Fix r, d ∈ ω and 〈ḋi : i ≤ d+ 1〉 as in Lemma 2.4 and λ0 as in Remark 2.5.
Call a function f monotone if whenever u ⊂ v ∈ dom(f), we have f(u) ⊂ f(v).

Claim 2.6. For any E∗ ⊂ λ of order type κ ≤ λ, κ0 ≥ ω1 such that κ → (κ0)2d
2ω

and any monotone W ′ : [E∗]≤d → [λ]≤ℵ0 such that for all u ∈ [E∗]≤d, u ⊂ W ′(u)

and P � W ′(u) contains a maximal antichain deciding the value of ḋ|u|(u), there
exists E′ ⊂ E∗ of order type κ0 such that CL.1, CL.2 hold with E,W replaced by
E′,W ′ and the following holds: for any k ∈ ω and any {ui ∈ [E′]≤d : i < k} and
{vi ∈ [E′]≤d : i < k}, if

(
⋃
i<k

ui, u0, · · · , uk−1, <) ' (
⋃
i<k

vi, v0, · · · , vk−1, <),

then the isomorphism can be extended to one that witnesses

(
⋃
i<k

W ′(ui),W
′(u0), · · · ,W ′(uk−1), <) ' (

⋃
i<k

W ′(vi),W
′(v0), · · · ,W ′(vk−1), <).

In particular, CL.4 holds with E,W replaced by E′,W ′.

Proof of the claim. Define an equivalence relation ∼ on [E∗]2d as follows: u ∼ v iff

(1) whenever u′ ∈ [u]≤d and v′ ∈ [v]≤d are such that (u, u′, <) ' (v, v′, <)
(which in particular implies there is some k ≤ d, |u′| = |v′| =def k), we
have that (W ′(u′), u′, <) ' (W ′(v′), v′, <) and for any p ∈ P � W ′(u′) and

n < r, p  ḋk(u′) = n iff hW ′(u′),W ′(v′)(p)  ḋk(v′) = n.

(2) whenever u0, u1 ∈ [u]≤d and v0, v1 ∈ [v]≤d satisfy that (u, u0, u1, <) '
(v, v0, v1, <), then

(
⋃

a∈[u]≤d

W ′(a),W ′(u0),W ′(u1), u, u0, u1) ' (
⋃

b∈[v]≤d

W ′(b),W ′(v0),W ′(v1), v, v0, v1).

It can be easily checked that the number of equivalence classes is at most 2ω. By
the fact that κ→ (κ0)2d

2ω , we can find E′ ⊂ E∗ of order type κ0 such that elements
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in [E′]2d are mutually ∼-equivalent. It is clear that CL.1 and CL.2 hold. Fix
k ∈ ω and {ui ∈ [E′]≤d : i < k} and {vi ∈ [E′]≤d : i < k} such that

(
⋃
i<k

ui, u0, · · · , uk−1, <) ' (
⋃
i<k

vi, v0, · · · , vk−1, <).

(2) in the definition of ∼ ensures that for i < j < k, by the fact that (ui∪uj , ui, uj , <
) ' (vi ∪ vj , vi, vj , <), we have

(W ′(ui)∪W ′(uj),W ′(ui),W ′(uj), ui, uj , <) ' (W ′(vi)∪W ′(vj),W ′(vi),W ′(vj), vi, vj , <).

Therefore, it is easy to see
⋃
i<k hW ′(ui),W ′(vi), extending the unique isomorphism

from (
⋃
i<k ui, u0, · · · , uk−1, <) to (

⋃
i<k vi, v0, · · · , vk−1, <), is an isomorphism be-

tween

(
⋃
i<k

W ′(ui),W
′(u0), · · · ,W ′(uk−1), <)

and

(
⋃
i<k

W ′(vi),W
′(v0), · · · ,W ′(vk−1), <).

�

Let W0 : [λ]≤d → [λ]≤ℵ0 be a monotone function such that for all u ∈ [λ]≤d, u ⊂
W0(u) and P � W0(u) contains a maximal antichain deciding the value of ḋ|u|(u).
This is possible by the c.c.c-ness of P. Apply Claim 2.6 with E∗ = λ, κ = λ, κ0 = λ0

and W ′ = W0 to get E0 ⊂ λ of order type λ0.
For each u ∈ [E0]≤d, define W (u) =def

⋃
{
⋂
v∈XW0(v) : X ⊂ [E0]≤d,

⋂
X ⊂ u}.

Notice that for any u ∈ [E0]≤d, W0(u) ⊂W (u).

Claim 2.7. (1) For any u, v ∈ [E0]≤d, W (u)∩W (v) = W (u∩ v) so in partic-
ular W is monotone and

(2) for any u ∈ [E0]≤d, W (u) is a countable subset of λ.

Proof of the claim. (1) immediately follows from the definition. To see (2) holds,
fix u ∈ [E0]≤d. First notice that in the definition of W (u), it suffices to consider
those X ⊂ [E0]≤d such that |X| ≤ d+ 1. To see this, it suffices to note that for any
X ⊂ [E0]≤d with

⋂
X ⊂ u, there exists Y ⊂ X such that |Y | ≤ d+ 1,

⋂
Y =

⋂
X

(in particular,
⋂
v∈XW0(v) ⊂

⋂
u∈Y W0(u)). If |X| ≤ d, take Y = X. Otherwise,

pick some x ∈ X, then x ∈ [E0]≤d. For each ξ ∈ x, if ξ 6∈
⋂
X, then there exists

xξ ∈ X such that ξ 6∈ xξ. Let Y = {x} ∪ {xξ : ξ ∈ x −
⋂
X}. This Y as defined

clearly satisfies the requirement.
The following suffices for the claim: for any k ≤ d and any X =def {x0, · · · , xk}

X ′ =def {x′0, · · · , x′k} ⊂ [E0]≤d with
⋂
X,

⋂
X ′ ⊂ u, if u ∩

⋃
X = u ∩

⋃
X ′ and

(2.8) (
⋃
X,u ∩

⋃
X,x0, · · · , xk, <) ' (

⋃
X ′, u ∩

⋃
X ′, x′0, · · · , x′k, <)

then
⋂
x∈XW0(x) =

⋂
x′∈X′W0(x′). If the assertion is true, W (u) will be a finite

union of countable sets. To see this, each structure (
⋃
X,u∩

⋃
X,x0, · · · , xk, <) is

uniquely coded by a finite function from |
⋃
X| to 2k+2. Clearly the number of such

codes is finite. Structures of the same code are isomorphic in the sense of (2.8).
To prove the assertion, fix X,X ′ as above and let ū = u ∩

⋃
X = u ∩

⋃
X ′. If⋃

X =
⋃
X ′, then by (2.8), X = X ′, we are done. So we may assume

⋃
X 6=

⋃
X ′.

We will induct on the size of (
⋃
X)∆(

⋃
X ′). Let ξ ∈

⋃
X, ξ′ ∈

⋃
X ′ be such

that (
⋃
X) ∩ ξ = (

⋃
X ′) ∩ ξ′ but ξ 6∈

⋃
X ′ or ξ′ 6∈

⋃
X. We may without loss of
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generality assume ξ < ξ′. In this case, ξ 6∈
⋃
X ′. In particular, ξ 6∈ ū and by (2.8),

ξ′ 6∈ ū. Let X ′′ = {x′′i : i ≤ k} such that x′′i =

{
x′i ξ′ 6∈ x′i
(x′i − {ξ′}) ∪ {ξ} ξ′ ∈ x′i.

It is

clear that

(2.9) (
⋃
X ′′, u ∩

⋃
X ′′, x′′0 , · · · , x′′k , <) ' (

⋃
X ′, u ∩

⋃
X ′, x′0, · · · , x′k, <).

It suffices to show
⋂
x′′∈X′′W0(x′′) =

⋂
x′∈X′W0(x′) since |(

⋃
X)∆(

⋃
X ′′)| <

|(
⋃
X)∆(

⋃
X ′)| so we can finish by the induction hypothesis. There exists j ≤ k

such that ξ′ 6∈ x′j since otherwise ξ′ ∈
⋂
X ′ ⊂ u ∩

⋃
X ′ = ū which cannot

be true. Thus x′′j = x′j . By Claim 2.6, there exists an isomorphism h from
(
⋃
i≤kW0(x′i),W0(x′0), · · · ,W0(x′k), <) to (

⋃
i≤kW0(x′′i ),W0(x′′0), · · · ,W0(x′′k), <) ex-

tending the unique isomorphism:

(
⋃
i≤k

x′i, x
′
0, · · · , x′k, <) ' (

⋃
i≤k

x′′i , x
′′
0 , · · · , x′′k , <).

Since x′′j = x′j and h sends W0(x′j) onto W0(x′′j ), we know h �W0(x′j) is the identity
function on W0(x′j). Therefore, W0(x′j) ⊃

⋂
x′∈X′W0(x′) = h(

⋂
x′∈X′W0(x′)) =⋂

x′′∈X′′W0(x′′).
�

Finally, using λ0 → (ℵ1)2d
2ω we apply Claim 2.6 with E∗ = E0, κ = λ0, κ0 = ω1

and W ′ = W to get E ⊂ E0 of order type ω1 such that CL.1, CL.2, CL.4 hold
for E and W . CL.3 also holds by Claim 2.7.

�

Let G ⊂ P be generic over V . In V [G], suppose f :
⊕

i<λN → r is the given

coloring. Define di : [λ]r+i → r such that di(ā) = f(si ∗ ā) for i ≤ r. Let ḋi for
i ≤ r be the corresponding names.

Back in V , apply Lemma 2.4 to d = 2r and 〈ḋi : i ≤ r〉, and find the desired E and

W (strictly speaking, we should apply to the sequence 〈ḋ′i+r : i ≤ r〉 where ḋ′i+r = ḋi
for i ≤ r). Enumerate E increasingly as {ei : i ∈ ω1}. Let Ai = {eω·i+j : 1 ≤ j ≤ ω}
for each i < r. For each i < r, j ≤ ω, let αij = eω·i+(1+j).

Definition 2.10. For any l ≤ r and any tuple s̄ ∈ Πi<l[Ai]
2 × Πi≥l,i<rAi, we

naturally identify s̄ as an (r + l)-tuple. To be more concrete, we take 2 elements
from each of the first l sets ordered naturally and 1 element from each of the
remaining sets.

(1) s̄ is l-canonical if s̄ is of the form

(α0
i0 , α

0
i′0
, · · · , αl−1

il−1
, αl−1

i′l−1
, αlil , α

l+1
il+1

, · · · , αr−1
ir−1

)

such that for any k < l, ik < i′k ≤ ω and max{im : m < r, im < ω} < i′k for
any k < l. If, in addition, we are given a sequence 〈Di ⊂ Ai : i < r〉, then
we say s̄ is from 〈Di : i < r〉 if s̄ ∈ Πi<l[Di]

2 ×Πi≥l,i<rDi.
(2) We call ī = 〈ik : k < r〉 the index of an l-canonical tuple s̄. s̄ is index-

strictly-increasing if whenever k < k′ < r, ik ≤ ik′ and if ik ∈ ω, then
ik < ik′ .

(3) For any two ordinals α, α′, let s̄α→α′ denote the tuple obtained by replacing
the occurrence of α in s̄ by α′. Similarly for any two sequences of ordinals
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ᾱ, ᾱ′ of the same length, s̄ᾱ→ᾱ′ denotes the tuple obtained by replacing the
occurence of αi in s̄ by α′i for each i < |ᾱ|.

Notation 2.11. Many times in what follows, we confuse a tuple with the set that
consists of elements from the tuple, namely s̄ = 〈si : i < n〉 is identified with {si :
i < n}. It can be mostly inferred from the context, for example W (s̄) = W ({si :
i < n}) and W (s̄ ∩ t̄) = W ({si : i < n} ∩ {tj : j < m}) where t̄ = 〈tj : j < m〉.
Claim 2.12. In V [G], for any j < r and for any finite Bi ⊂ Ai with aiω ∈ Bi for
i < r, there exists arbitrarily large α ∈ Aj\{αjω} such that α > Bj\{αjω} and the
following is true: for any l ≤ r, any l-canonical tuple s̄ from 〈Bi : i < r〉 containing
αjω, dl(s̄

′) = dl(s̄) where s̄′ = s̄αj
ω→α.

Proof. Fix j < r. Work in V . For any given p ∈ P and γ ∈ Aj\{αjω}, we want
to find p′ ≤ p and α > max{γ,maxBj\{αjω}} in Aj\{αjω} such that p′ forces the
conclusion above is true for this α. This clearly suffices by the density argument.

Given p ∈ P, extending it if necessary, we may assume that for each l ≤ r and
each l-canonical tuple s̄ from 〈Bi : i < r〉, p �W (s̄) decides the value of ḋl(s̄). Find
α ∈ Aj\{αjω} large enough such that

• α > max{maxBj\{αjω}, γ}
• dom(p) ∩ (W (u ∪ {α})−W (u)) = ∅ for all u ∈ [

⋃
i<r Bi]

≤2r−1.

This is possible since dom(p) is finite and for any fix u ∈ [
⋃
i<r Bi]

≤2r−1, W (u ∪
{α}) ∩W (u ∪ {α′}) = W (u) for any α 6= α′ > maxu+ 1.

Define p′ = p∪
⋃
l≤r{hW (s̄),W (s̄′)(p �W (s̄)) : s̄ is an l-canonical tuple from 〈Bi :

i < r〉, αjω ∈ s̄, and s̄′ = s̄αj
ω→α}. We claim that p′ is the desired condition. To

verify this, it suffices to show the following:

(1) p′ is a condition. We do this by showing for p is compatible with hW (s̄),W (s̄′)(p �
W (s̄)) and hW (s̄),W (s̄′)(p � W (s̄)) is compatible with hW (t̄),W (t̄′)(p � W (t̄))
for each s̄, t̄ as above.
• Fix s̄. To see p is compatible with p∗ =def hW (s̄),W (s̄′)(p � W (s̄)),

notice that dom(p) ∩ dom(p∗) ⊂ dom(p) ∩W (s̄′) ⊂ W (s̄′ − {α}) by
the choice of α. By CL.4, hW (s̄),W (s̄′) � W (s̄ − {αjω}) is the identity

function on W (s̄−{αjω}) since (s̄, s̄−{αjω}, <) ' (s̄′, s̄′−{α}, <) and
s̄ − {αjω} = s̄′ − {α}. Hence p∗ � W (s̄′ − {α}) = p � W (s̄ − {αjω}) =
p �W (s̄′ − {α}).

• Fix s̄, t̄ as above. Let q0 =def hW (s̄),W (s̄′)(p �W (s̄)), q1 =def hW (t̄),W (t̄′)(p �
W (t̄)). Notice that dom(q0)∩dom(q1) ⊂W (s̄′)∩W (t̄′) = W (s̄′∩ t̄′) =
W ((s̄∩t̄)αj

ω→α). Observe that (s̄, s̄∩t̄, <) ' (s̄′, s̄′∩t̄′, <) and (t̄, s̄∩t̄, <
) ' (t̄′, s̄′∩ t̄′, <). By CL.4, we have hW (s̄),W (s̄′)(W (s̄∩ t̄)) = W (s̄′∩ t̄′)
and hW (t̄),W (t̄′)(W (s̄ ∩ t̄)) = W (s̄′ ∩ t̄′). Hence q0 �W ((s̄ ∩ t̄)αj

ω→α) =

hW (s̄),W (s̄′)(p � W (s̄ ∩ t̄)) = hW (s̄∩t̄),W (s̄′∩t̄′)(p � W (s̄ ∩ t̄)) and q1 �
W ((s̄ ∩ t̄)αj

ω→α) = hW (t̄),W (t̄′)(p � W (s̄ ∩ t̄)) = hW (s̄∩t̄),W (s̄′∩t̄′)(p �
W (s̄ ∩ t̄)). Since q0 and q1 agree on their common domain, it follows
that they are compatible.

(2) p′ forces ḋl(s̄) = ḋl(s̄
′) for any l-canonical tuple s̄ from 〈Bi : i < r〉 contain-

ing αjω where s̄′ = s̄αj
ω→α for any l ≤ r. Fix l and s̄. By the initial assump-

tion about p, we know there exists n < r such that p � W (s̄)  ḋl(s̄) = n.

By CL.2, hW (s̄),W (s̄′)(p � W (s̄))  ḋl(s̄
′) = n. Hence p′  ḋl(s̄

′) = n =

ḋl(s̄).
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�

Claim 2.13. There exist Ci ⊂ Ai containing αiω for i < r such that

(1) for each i < r, type(Ci) = ω + 1
(2) for each l ≤ r and each index-strictly-increasing l-canonical tuple

s̄ = (α0
i0 , α

0
i′0
, · · · , αl−1

il−1
, αl−1

i′l−1
, αlil , α

l+1
il+1

, · · · , αr−1
ir−1

)

from 〈Ci : i < r〉, dl(s̄) = dl(s̄
′), where

s̄′ = (α0
i0 , α

0
ω, · · · , αl−1

il−1
, αl−1

ω , αlω, α
l+1
ω , · · · , αr−1

ω ).

In particular, the color s̄ gets under dl only depends on its index.

Proof. We will build these sets in ω-steps. We will pick one point at a time from
sets listed in the following order:

A0, A1, · · · , Ar−1, A0, A1, · · · , Ar−1, A0, A1, · · · , Ar−1, · · · .
In particular, we will find J i = {jik : k ∈ ω} ⊂ ω such that Ci = {αi

jik
: k ∈

ω} ∪ {αiω} for each i < r. For fixed i, k, let Cik denote {αi
ji
k′

: k′ < k} ∪ {αiω}.
Recall Ci0 = {αiω} for all i < r. Recursively, suppose for some i < r and k ∈ ω

we have defined Cpq for all 〈q, p〉 <lex 〈k, i〉 (i.e. either q < k or q = k and p < i).

Apply Claim 2.12 to pick jik ∈ ω such that

• jik > jpq for all 〈q, p〉 <lex 〈k, i〉
• for any l ≤ r and any l-canonical tuple s̄ containing αiω from 〈Cpkp : p < r〉

where kp = k if p < i and kp = k − 1 if p ≥ i, it is true that dl(s̄) =
dl(s̄αi

ω→αi

ji
k

).

We now verify that 〈Ci : i < r〉 satisfies (2). Fix l ≤ r and some index-strictly-
increasing l-canonical tuple s̄ from 〈Ci : i < r〉, say

s̄ = (α0
i0 , α

0
i′0
, · · · , αl−1

il−1
, αl−1

i′l−1
, αlil , α

l+1
il+1

, · · · , αr−1
ir−1

).

By the hypothesis, we know max{im : m < r, im < ω} < i′k for any k < l. By the
conclusion of Claim 2.12 and the index management in our recursive process, we
know that

dl(s̄) = dl(α
0
i0 , α

0
ω, · · · , αl−1

il−1
, αl−1

ω , αlω, α
l+1
ω , · · · , αr−1

ω ).

�

By Claim 2.13, we may without loss of generality assume that the sets 〈Ai : i < r〉
already satisfy that: for each l ≤ r, for each index-strictly-increasing l-canonical
tuple s̄ from 〈Ai : i < r〉 satisfies (2) in the conclusion of Claim 2.13.

To finish the proof, we basically need similar arguments as in Claim 2.9 and Step
5 from [8]. We supply a proof for completeness.

Claim 2.14. There exist 〈Bi ⊂ Ai : i < r, αiω ∈ Bi, type(Bi) = ω + 1〉 and
〈ρl < r : l ≤ r〉 such that for each l ≤ r, for each index-strictly-increasing l-
canonical tuple s̄ from 〈Bi : i < r〉, dl(s̄) = ρl.

Proof. Fix l ≤ r,W ∈ [ω]ℵ0 . Define g : [W ]l → r such that for each ī = {i0 < i1 <
· · · < il−1},

g(̄i) = dl(α
0
i0 , α

0
ω, · · · , αl−1

il−1
, αl−1

ω , αlω, α
l+1
ω , · · · , αr−1

ω ).
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Let I ∈ [W ]ℵ0 be a monochromatic subset with color ρl for g. For any index-
strictly-increasing l-canonical tuple

s̄ = (α0
j0 , α

0
j′0
, · · · , αl−1

jl−1
, αl−1

j′l−1
, αljl , α

l+1
jl+1

, · · · , αr−1
jr−1

)

such that jk, j
′
t ∈ I ∪ {ω} for any k < r and t < l, by Claim 2.13 and the remark

that follows, we know that

dl(s̄) = dl(α
0
j0 , α

0
ω, · · · , αl−1

jl−1
, αl−1

ω , αlω, α
l+1
ω , · · · , αr−1

ω ) = g({j0 < · · · < jl−1}) = ρl.

To get the conclusion of the claim, apply the procedure above repeatedly to get
ω ⊃ I0 ⊃ I1 ⊃ · · · ⊃ Ir−1 ⊃ Ir. It is clear that Bi = {αij : j ∈ Ir} ∪ {αiω} for i < r
will be the desired sets.

�

By Claim 2.14, we may without loss of generality assume that the sets 〈Ai : i < r〉
already satisfy that: there exist 〈ρl : l ≤ r〉 such that for each l ≤ r, for each index-
strictly-increasing l-canonical tuple s̄ from 〈Ai : i < r〉, dl(s̄) = ρl. By the Pigeon
hole principle, there exist l′ < l such that ρl′ = ρl = ρ.

Claim 2.15. There exists an infinite X such that f � X +X ≡ ρ.

Proof. For i < ω, let

āi = (α0
0, α

0
ω, α

1
1, α

1
ω, · · · , αl

′−1
l′−1, α

l′−1
ω ,

αl
′

l′+i·(l−l′), α
l′+1
l′+1+i·(l−l′), · · · , α

l−1
l−1+i·(l−l′),

αlω, · · · , αr−1
ω ),

namely, we take

(1) {αkk, αkω} from Ak for each k < l′

(2) {αkk+i(l−l′)} from Ak for each k ≥ l′ and k < l

(3) {αkω} from Ak for each k ≥ l.

Define xi =
1

2
sl′ ∗ āi. For i < j ∈ ω, consider

b̄i,j = (α0
0, α

0
ω, · · · , αl

′−1
l′−1, α

l′−1
ω ,

αl
′

l′+i·(l−l′), α
l′

l′+j·(l−l′), · · ·α
l−1
l−1+i·(l−l′), α

l−1
l−1+j·(l−l′),

αlω, · · · , αr−1
ω ),

namely, we take

(1) {αkk, αkω} from Ak for each k < l′

(2) {αkk+i(l−l′), α
k
k+j(l−l′)} from Ak for each k ≥ l′ and k < l

(3) {αkω} from Ak for each k ≥ l.
It is not hard to notice that xi + xj = sl ∗ b̄i,j .

For any i < j ∈ ω, āi (b̄i,j respectively) is easily seen to be an index-strictly-
increasing l′-canonical (l-canonical) tuple. Therefore, f(2xi) = f(sl′∗āi) = dl′(āi) =
ρl′ = ρ and f(xi + xj) = f(sl ∗ b̄i,j) = dl(b̄i,j) = ρl = ρ. We conclude that
X = {xi : i ∈ ω} is the set as desired.

�

Claim 2.15 finishes the proof of (1).
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Proof of part (2). We prove a stronger statement:
⊕

i<ω1
N→+ (ℵ0)2. To see this,

for any such f , let di(ā) = f(si ∗ ā) be defined as before for i < 3. In particular, the
domain of di is [ω1]i+2 for i < 3. Apply the Dushnik-Miller theorem (see Theorem
11.3 in [2]) to get A = {αj : j ≤ ω} ∈ [ω1]ω+1 such that di � [A]i+2 ≡ ρi < 2 for all
i < 3. By the Pigeon hole principle we have the following cases and we will define
X = {xi : i ∈ ω} for each case.

(1) ρ0 = ρ1 = ρ. Let xi =
1

2
s0 ∗ (αi, αω). Then f(2xi) = f(s0 ∗ (αi, αω)) =

d0(αi, αω) = ρ0 = ρ. For any i < j ∈ ω, f(xi + xj) = f(s1 ∗ (αi, αj , αω)) =
d1(αi, αj , αω) = ρ1 = ρ.

(2) ρ0 = ρ2 = ρ. Let xi =
1

2
s0∗(α2i, α2i+1). Then f(2xi) = f(s0∗(α2i, α2i+1)) =

d0(α2i, α2i+1) = ρ0 = ρ. For any i < j ∈ ω, f(xi + xj) = f(s2 ∗
(α2i, α2i+1, α2j , α2j+1)) = d2(α2i, α2i+1, α2j , α2j+1) = ρ2 = ρ.

(3) ρ2 = ρ1 = ρ. Let xi =
1

2
s0 ∗ (α0, α1, αi+2). Then f(2xi) = f(s0 ∗

(α0, α1, αi+2)) = d0(α0, α1, αi+2) = ρ0 = ρ. For any i < j ∈ ω, f(xi+xj) =
f(s2 ∗ (α0, α1, αi+2, αj+2)) = d2(α0, α1, αi+2, αj+2) = ρ2 = ρ.

�

Clearly the proof above does not generalize to the case when r = 3 since 2ω 6→
(ω + 2)3

2. A more fundamental restriction is that by a result of Hindman, Leader
and Strauss [5], there exists some r ∈ ω such that

⊕
i<ω1

N 6→+ (ℵ0)r.
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