MONOCHROMATIC SUMSET WITHOUT THE USE OF LARGE CARDINALS

JING ZHANG

Abstract

We show in this note that in the forcing extension by $\operatorname{Add}\left(\omega, \beth_{\omega}\right)$, the following Ramsey property holds: for any $r \in \omega$ and any $f: \mathbb{R} \rightarrow r$, there exists an infinite $X \subset \mathbb{R}$ such that $X+X$ is monochromatic under f. We also show the Ramsey statement above is true in ZFC when $r=2$. This answers two questions from [8.

1. Introduction

Definition 1.1. Let $(A,+)$ be an additive structure and κ, r be cardinals. Let $A \rightarrow^{+}(\kappa)_{r}$ abbreviate the statement: for any $f: A \rightarrow r$, there exists $X \subset A$ with $|X|=\kappa$ such that $X+X=_{\text {def }}\{a+b: a, b \in X\}$ is monochromatic under f.

There have been recent developments on additive partition relations for real numbers. Hindman, Leader and Strauss [5 showed that if $2^{\omega}<\aleph_{\omega}$ then there exists some $r \in \omega$ such that $\mathbb{R} \not \not^{+}\left(\aleph_{0}\right)_{r}$. On the other hand, Komjáth, Leader, Russell, Shelah, Soukup and Vidnyánszky [8 showed that relative to the existence of an ω_{1}-Erdős cardinal, it is consistent that for any $r \in \omega, \mathbb{R} \rightarrow^{+}\left(\aleph_{0}\right)_{r}$. These results are optimal in a sense as there exist the following restrictions:
(1) Komjáth [7] and independently Soukup and Weiss [11 showed that $\mathbb{R} \mu^{+}$ $\left(\aleph_{1}\right)_{2} ;$
(2) Soukup and Vidnyánszky showed there exists a finite coloring of f on \mathbb{R} such that no infinite $X \subset \mathbb{R}$ satisfies that $\underbrace{X+\cdots+X}_{k}$ is monochromatic for $k \geq 3$.
It should be emphasized that the difficulty comes from the fact that repetitions are allowed. If we only want some infinite $X \subset \mathbb{R}$ such that $X \oplus X=\{a+b$: $a \neq b \in X\}$ is monochromatic, then the classical Ramsey theorem implies this already. In fact, Hindman's finite-sum theorem is a much stronger Ramsey-type statement: any finite coloring of \mathbb{N}, there exists some infinite $X \subset \mathbb{N}$ such that $F S(X)={ }_{\text {def }}\left\{\Sigma_{0 \leq i<k} a_{i}:\left\{a_{0}, a_{1}, \cdots, a_{k-1}\right\} \in[X]^{<\omega}\right\}$ is monochromatic. However, if repeated sums are allowed, things turn towards the other direction: Hindman [4] showed $\mathbb{N} \not \not^{+}\left(\aleph_{0}\right)_{3}$ and Owings asked (and it is still open) that if $\mathbb{N} \not \not^{+}\left(\aleph_{0}\right)_{2}$ is true. Interestingly, Fernández-Bretón and Rinot [3 showed that the uncountable analogs of Hindman's theorem must necessarily fail in a strong way.

[^0]The following questions among others were asked by the authors of [8].
(1) Is the use of large cardinals necessary to establish the consistency $\mathbb{R} \rightarrow^{+}$ $\left(\aleph_{0}\right)_{r}$ for all $r \in \omega$?
(2) Is $\mathbb{R} \rightarrow^{+}\left(\aleph_{0}\right)_{2}$ true in ZFC?

We answer the first question negatively and the second positively.
Theorem 1.1. (1) In the forcing extension by $\operatorname{Add}\left(\omega, \beth_{\omega}\right), \mathbb{R} \rightarrow^{+}\left(\aleph_{0}\right)_{r}$ for any $r \in \omega$.
(2) $\mathbb{R} \rightarrow^{+}\left(\aleph_{0}\right)_{2}$.

Remark 1.2. The continuum in the model of 8 is an \aleph-fixed point, which is very large. Over a ground model of GCH, Theorem 1.1 suggests that the most natural way to eliminate the obstacles from cardinal arithmetic works since by a result of Hindman, Leader and Strauss [5], if $\mathbb{R} \rightarrow^{+}\left(\aleph_{0}\right)_{r}$ for all $r<\omega$, then $2^{\omega} \geq \aleph_{\omega+1}$.

Notation 1.3. We will identify $(\mathbb{R},+)$, as a vector space over \mathbb{Q}, with $\bigoplus_{i<2^{\omega}} \mathbb{Q}$. The latter is the direct sum of 2^{ω} copies of $(\mathbb{Q},+)$. More concretely, any $s \in$ $\bigoplus_{i<2^{\omega}}(\mathbb{Q},+)$ is a finitely supported function whose range is contained in \mathbb{Q}. The addition on the direct sum is defined coordinate-wise. Similarly for some cardinal $\kappa, \bigoplus_{i<\kappa} \mathbb{N}$ is the direct sum of κ copies of $(\mathbb{N},+)$. It is easy to see that if $\kappa \leq 2^{\omega}$, $\bigoplus_{i<\kappa} \mathbb{N}$ is an additive substructure of \mathbb{R}.

2. The proof of Theorem 1.1

First we prove part (1). Let $\lambda=\beth_{\omega}$ and $\mathbb{P}=\operatorname{Add}(\omega, \lambda)$. In fact, we show that in $V^{\mathbb{P}}, \bigoplus_{i<\lambda} \mathbb{N} \rightarrow^{+}\left(\aleph_{0}\right)_{r}$ for any $r \in \omega$.

Definition 2.1. Suppose $W, W^{\prime} \subset \lambda$ are such that type $(W)=\operatorname{type}\left(W^{\prime}\right)$. Let $h_{W, W^{\prime}}: W \rightarrow W^{\prime}$ be the unique order isomorphism. For $A, A^{\prime} \subset \lambda$ with type $(A)=$ type $\left(A^{\prime}\right), h_{A, A^{\prime}}$ naturally induces a map from $\mathbb{P} \upharpoonright A$ to $\mathbb{P} \upharpoonright A^{\prime}$ where any $p \in \mathbb{P} \upharpoonright A$ is mapped to $p^{\prime} \in \mathbb{P} \upharpoonright A^{\prime}$ such that $\operatorname{dom}\left(p^{\prime}\right)=h_{A, A^{\prime}}^{-1}(\operatorname{dom}(p))$ and $p^{\prime}(j)=p\left(h_{A, A^{\prime}}^{-1}(j)\right)$. We will abuse the notation by using $h_{A, A^{\prime}}$ to denote the induced map from $\mathbb{P} \upharpoonright A$ to $\mathbb{P} \upharpoonright A^{\prime}$. This can be easily inferred from the context.

Definition 2.2 (6), 5, 8). For any $r \geq 2$, define a sequence of finite strings of natural numbers $\left\langle s_{l}: l \leq r\right\rangle$ such that for each $l \leq r,\left|s_{l}\right|=r+l$ and $s_{i}(k)=$ $\left\{\begin{array}{ll}2 & \text { if } k<2 l \\ 4 & \text { otherwise. }\end{array}\right.$ In other words, each s_{l} is formed by $2 l$ many $2^{\prime} s$ followed by $r-l$ many $4^{\prime} s$.

Definition 2.3 (The star operation, see [6], 8$]$). Let K be either \mathbb{N} or \mathbb{Q}. For $k \in \omega, s \in(K-\{0\})^{k}$ and a finite subset of ordinals $a=\left\{\xi_{i}: i<k\right\}_{<} \subset \lambda$, let $s * a$ denote the function from λ to K supported on a that sends ξ_{i} to $s(i)$.

We will use the following combinatorial lemma due to Shelah [10, 9 .
Lemma 2.4 (The higher dimensional Δ-system lemma). Fix $r, d \in \omega$. Let $\left\langle\dot{d}_{i}\right.$: $\left.[\lambda]^{i} \rightarrow r \mid i \leq d\right\}$ be a sequence of \mathbb{P}-names for colorings. Then there exists $E \subset \lambda$ of order type ω_{1} and $W:[E] \leq d \rightarrow[\lambda] \leq \aleph_{0}$ such that
CL. 1 For all $u \in[E]^{\leq d}, u \subset W(u)$ and $\mathbb{P} \upharpoonright W(u)$ contains a maximal antichain deciding the value of $\dot{d}_{|u|}(u)$.
CL.2 For any $u, v \in[E]^{\leq d}$ such that $|u|=|v|$, type $(W(u))=\operatorname{type}(W(v))$, $h_{W(u), W(v)}(u)=v$ and for any $p \in \mathbb{P} \upharpoonright W(u)$, for any $n<r, p \Vdash \dot{d}_{|u|}(u)=$ $n \Leftrightarrow h_{W(u), W(v)}(p) \Vdash \dot{d}_{|v|}(v)=n$.
CL. 3 For any $u, v \in[E] \leq d, W(u) \cap W(v)=W(u \cap v)$.
CL. 4 For any $u_{1} \subset u_{2}, u_{1}^{\prime} \subset u_{2}^{\prime}$ where $u_{2}, u_{2}^{\prime} \in[E] \leq d$, if $\left(u_{2}, u_{1},<\right) \simeq\left(u_{2}^{\prime}, u_{1}^{\prime},<\right)$, then $h_{W\left(u_{2}\right), W\left(u_{2}^{\prime}\right)} \upharpoonright W\left(u_{1}\right)=h_{W\left(u_{1}\right), W\left(u_{1}^{\prime}\right)}$.

Remark 2.5. Different versions of Lemma 2.4 appeared in [10], Lemma 4.1 of (9], Claim 7.2.a of [1] and the appendix of [12]. We will use the fact that $\lambda=\beth_{\omega}$ to present a slightly simpler proof, following the arguments presented in Claim 7.2.a of [1]. More specifically, we will take advantage of the following fact: there exists λ_{0} such that $\lambda \rightarrow\left(\lambda_{0}\right)_{2 \omega}^{2 d}$ and $\lambda_{0} \rightarrow\left(\aleph_{1}\right)_{2 \omega}^{2 d}$. This statement is the only fact about λ we will use in the proof. In fact, that $\lambda \rightarrow\left(\aleph_{1}\right)_{2}^{2 d}$ suffices to get the conclusion of Lemma 2.4 but the proof is slightly more complicated. The interested readers are directed to the proofs in Claim 7.2.a of [1] (for CL.1|CL.2 CL.3) and in the appendix of [12] (for CL.4).

Proof. Fix $r, d \in \omega$ and $\left\langle\dot{d}_{i}: i \leq d+1\right\rangle$ as in Lemma 2.4 and λ_{0} as in Remark 2.5. Call a function f monotone if whenever $u \subset v \in \operatorname{dom}(f)$, we have $f(u) \subset f(v)$.
Claim 2.6. For any $E^{*} \subset \lambda$ of order type $\kappa \leq \lambda, \kappa_{0} \geq \omega_{1}$ such that $\kappa \rightarrow\left(\kappa_{0}\right)_{2 \omega}^{2 d}$ and any monotone $W^{\prime}:\left[E^{*}\right] \leq d \rightarrow[\lambda] \leq \aleph_{0}$ such that for all $u \in\left[E^{*}\right] \leq d, u \subset W^{\prime}(u)$ and $\mathbb{P} \upharpoonright W^{\prime}(u)$ contains a maximal antichain deciding the value of $\dot{d}_{|u|}(u)$, there exists $E^{\prime} \subset E^{*}$ of order type κ_{0} such that CL.1, CL.2 hold with E, W replaced by E^{\prime}, W^{\prime} and the following holds: for any $k \in \omega$ and any $\left\{u_{i} \in\left[E^{\prime}\right] \leq d: i<k\right\}$ and $\left\{v_{i} \in\left[E^{\prime}\right]^{\leq d}: i<k\right\}$, if

$$
\left(\bigcup_{i<k} u_{i}, u_{0}, \cdots, u_{k-1},<\right) \simeq\left(\bigcup_{i<k} v_{i}, v_{0}, \cdots, v_{k-1},<\right)
$$

then the isomorphism can be extended to one that witnesses

$$
\left(\bigcup_{i<k} W^{\prime}\left(u_{i}\right), W^{\prime}\left(u_{0}\right), \cdots, W^{\prime}\left(u_{k-1}\right),<\right) \simeq\left(\bigcup_{i<k} W^{\prime}\left(v_{i}\right), W^{\prime}\left(v_{0}\right), \cdots, W^{\prime}\left(v_{k-1}\right),<\right)
$$

In particular, CL. 4 holds with E, W replaced by E^{\prime}, W^{\prime}.
Proof of the claim. Define an equivalence relation \sim on $\left[E^{*}\right]^{2 d}$ as follows: $u \sim v$ iff
(1) whenever $u^{\prime} \in[u]^{\leq d}$ and $v^{\prime} \in[v] \leq d$ are such that $\left(u, u^{\prime},<\right) \simeq\left(v, v^{\prime},<\right)$ (which in particular implies there is some $k \leq d,\left|u^{\prime}\right|=\left|v^{\prime}\right|={ }_{\text {def }} k$), we have that $\left(W^{\prime}\left(u^{\prime}\right), u^{\prime},<\right) \simeq\left(W^{\prime}\left(v^{\prime}\right), v^{\prime},<\right)$ and for any $p \in \mathbb{P} \upharpoonright W^{\prime}\left(u^{\prime}\right)$ and $n<r, p \Vdash \dot{d}_{k}\left(u^{\prime}\right)=n$ iff $h_{W^{\prime}\left(u^{\prime}\right), W^{\prime}\left(v^{\prime}\right)}(p) \Vdash \dot{d}_{k}\left(v^{\prime}\right)=n$.
(2) whenever $u_{0}, u_{1} \in[u]^{\leq d}$ and $v_{0}, v_{1} \in[v]^{\leq d}$ satisfy that $\left(u, u_{0}, u_{1},<\right) \simeq$ $\left(v, v_{0}, v_{1},<\right)$, then

$$
\left(\bigcup_{a \in[u] \leq d} W^{\prime}(a), W^{\prime}\left(u_{0}\right), W^{\prime}\left(u_{1}\right), u, u_{0}, u_{1}\right) \simeq\left(\bigcup_{b \in[v] \leq d} W^{\prime}(b), W^{\prime}\left(v_{0}\right), W^{\prime}\left(v_{1}\right), v, v_{0}, v_{1}\right)
$$

It can be easily checked that the number of equivalence classes is at most 2^{ω}. By the fact that $\kappa \rightarrow\left(\kappa_{0}\right)_{2 \omega}^{2 d}$, we can find $E^{\prime} \subset E^{*}$ of order type κ_{0} such that elements
in $\left[E^{\prime}\right]^{2 d}$ are mutually \sim-equivalent. It is clear that CL. 1 and CL. 2 hold. Fix $k \in \omega$ and $\left\{u_{i} \in\left[E^{\prime}\right]^{\leq d}: i<k\right\}$ and $\left\{v_{i} \in\left[E^{\prime}\right] \leq d: i<k\right\}$ such that

$$
\left(\bigcup_{i<k} u_{i}, u_{0}, \cdots, u_{k-1},<\right) \simeq\left(\bigcup_{i<k} v_{i}, v_{0}, \cdots, v_{k-1},<\right)
$$

(2) in the definition of \sim ensures that for $i<j<k$, by the fact that $\left(u_{i} \cup u_{j}, u_{i}, u_{j},<\right.$ $) \simeq\left(v_{i} \cup v_{j}, v_{i}, v_{j},<\right)$, we have

$$
\left(W^{\prime}\left(u_{i}\right) \cup W^{\prime}\left(u_{j}\right), W^{\prime}\left(u_{i}\right), W^{\prime}\left(u_{j}\right), u_{i}, u_{j},<\right) \simeq\left(W^{\prime}\left(v_{i}\right) \cup W^{\prime}\left(v_{j}\right), W^{\prime}\left(v_{i}\right), W^{\prime}\left(v_{j}\right), v_{i}, v_{j},<\right)
$$

Therefore, it is easy to see $\bigcup_{i<k} h_{W^{\prime}\left(u_{i}\right), W^{\prime}\left(v_{i}\right)}$, extending the unique isomorphism from $\left(\bigcup_{i<k} u_{i}, u_{0}, \cdots, u_{k-1},<\right)$ to $\left(\bigcup_{i<k} v_{i}, v_{0}, \cdots, v_{k-1},<\right)$, is an isomorphism between

$$
\left(\bigcup_{i<k} W^{\prime}\left(u_{i}\right), W^{\prime}\left(u_{0}\right), \cdots, W^{\prime}\left(u_{k-1}\right),<\right)
$$

and

$$
\left(\bigcup_{i<k} W^{\prime}\left(v_{i}\right), W^{\prime}\left(v_{0}\right), \cdots, W^{\prime}\left(v_{k-1}\right),<\right)
$$

Let $W_{0}:[\lambda]^{\leq d} \rightarrow[\lambda]^{\leq \aleph_{0}}$ be a monotone function such that for all $u \in[\lambda] \leq d, u \subset$ $W_{0}(u)$ and $\mathbb{P} \upharpoonright W_{0}(u)$ contains a maximal antichain deciding the value of $\dot{d}_{|u|}(u)$. This is possible by the c.c.c-ness of \mathbb{P}. Apply Claim2.6 with $E^{*}=\lambda, \kappa=\lambda, \kappa_{0}=\lambda_{0}$ and $W^{\prime}=W_{0}$ to get $E_{0} \subset \lambda$ of order type λ_{0}.

For each $u \in\left[E_{0}\right]^{\leq d}$, define $W(u)=_{\text {def }} \bigcup\left\{\bigcap_{v \in X} W_{0}(v): X \subset\left[E_{0}\right]^{\leq d}, \bigcap X \subset u\right\}$. Notice that for any $u \in\left[E_{0}\right]^{\leq d}, W_{0}(u) \subset W(u)$.
Claim 2.7. (1) For any $u, v \in\left[E_{0}\right] \leq d, W(u) \cap W(v)=W(u \cap v)$ so in particular W is monotone and
(2) for any $u \in\left[E_{0}\right]^{\leq d}, W(u)$ is a countable subset of λ.

Proof of the claim. (1) immediately follows from the definition. To see (2) holds, fix $u \in\left[E_{0}\right] \leq d$. First notice that in the definition of $W(u)$, it suffices to consider those $X \subset\left[E_{0}\right] \leq d$ such that $|X| \leq d+1$. To see this, it suffices to note that for any $X \subset\left[E_{0}\right]^{\leq d}$ with $\bigcap X \subset u$, there exists $Y \subset X$ such that $|Y| \leq d+1, \bigcap Y=\bigcap X$ (in particular, $\bigcap_{v \in X} W_{0}(v) \subset \bigcap_{u \in Y} W_{0}(u)$). If $|X| \leq d$, take $Y=X$. Otherwise, pick some $x \in X$, then $x \in\left[E_{0}\right] \leq d$. For each $\xi \in x$, if $\xi \notin \bigcap X$, then there exists $x_{\xi} \in X$ such that $\xi \notin x_{\xi}$. Let $Y=\{x\} \cup\left\{x_{\xi}: \xi \in x-\bigcap X\right\}$. This Y as defined clearly satisfies the requirement.

The following suffices for the claim: for any $k \leq d$ and any $X={ }_{\operatorname{def}}\left\{x_{0}, \cdots, x_{k}\right\}$ $X^{\prime}=\operatorname{def}\left\{x_{0}^{\prime}, \cdots, x_{k}^{\prime}\right\} \subset\left[E_{0}\right]^{\leq d}$ with $\bigcap X, \bigcap X^{\prime} \subset u$, if $u \cap \bigcup X=u \cap \bigcup X^{\prime}$ and

$$
\begin{equation*}
\left(\bigcup X, u \cap \bigcup X, x_{0}, \cdots, x_{k},<\right) \simeq\left(\bigcup X^{\prime}, u \cap \bigcup X^{\prime}, x_{0}^{\prime}, \cdots, x_{k}^{\prime},<\right) \tag{2.8}
\end{equation*}
$$

then $\bigcap_{x \in X} W_{0}(x)=\bigcap_{x^{\prime} \in X^{\prime}} W_{0}\left(x^{\prime}\right)$. If the assertion is true, $W(u)$ will be a finite union of countable sets. To see this, each structure ($\left.\bigcup X, u \cap \bigcup X, x_{0}, \cdots, x_{k},<\right)$ is uniquely coded by a finite function from $|\bigcup X|$ to 2^{k+2}. Clearly the number of such codes is finite. Structures of the same code are isomorphic in the sense of 2.8 .

To prove the assertion, fix X, X^{\prime} as above and let $\bar{u}=u \cap \bigcup X=u \cap \bigcup X^{\prime}$. If $\bigcup X=\bigcup X^{\prime}$, then by $2.8, X=X^{\prime}$, we are done. So we may assume $\bigcup X \neq \bigcup X^{\prime}$. We will induct on the size of $(\bigcup X) \Delta\left(\bigcup X^{\prime}\right)$. Let $\xi \in \bigcup X, \xi^{\prime} \in \bigcup X^{\prime}$ be such that $(\bigcup X) \cap \xi=\left(\bigcup X^{\prime}\right) \cap \xi^{\prime}$ but $\xi \notin \bigcup X^{\prime}$ or $\xi^{\prime} \notin \bigcup X$. We may without loss of
generality assume $\xi<\xi^{\prime}$. In this case, $\xi \notin \bigcup X^{\prime}$. In particular, $\xi \notin \bar{u}$ and by (2.8), $\xi^{\prime} \notin \bar{u}$. Let $X^{\prime \prime}=\left\{x_{i}^{\prime \prime}: i \leq k\right\}$ such that $x_{i}^{\prime \prime}=\left\{\begin{array}{ll}x_{i}^{\prime} & \xi^{\prime} \notin x_{i}^{\prime} \\ \left(x_{i}^{\prime}-\left\{\xi^{\prime}\right\}\right) \cup\{\xi\} & \xi^{\prime} \in x_{i}^{\prime} .\end{array}\right.$ It is clear that

$$
\begin{equation*}
\left(\bigcup X^{\prime \prime}, u \cap \bigcup X^{\prime \prime}, x_{0}^{\prime \prime}, \cdots, x_{k}^{\prime \prime},<\right) \simeq\left(\bigcup X^{\prime}, u \cap \bigcup X^{\prime}, x_{0}^{\prime}, \cdots, x_{k}^{\prime},<\right) \tag{2.9}
\end{equation*}
$$

It suffices to show $\bigcap_{x^{\prime \prime} \in X^{\prime \prime}} W_{0}\left(x^{\prime \prime}\right)=\bigcap_{x^{\prime} \in X^{\prime}} W_{0}\left(x^{\prime}\right)$ since $\left|(\bigcup X) \Delta\left(\bigcup X^{\prime \prime}\right)\right|<$ $\left|(\bigcup X) \Delta\left(\bigcup X^{\prime}\right)\right|$ so we can finish by the induction hypothesis. There exists $j \leq k$ such that $\xi^{\prime} \notin x_{j}^{\prime}$ since otherwise $\xi^{\prime} \in \bigcap X^{\prime} \subset u \cap \bigcup X^{\prime}=\bar{u}$ which cannot be true. Thus $x_{j}^{\prime \prime}=x_{j}^{\prime}$. By Claim 2.6 there exists an isomorphism h from $\left(\bigcup_{i \leq k} W_{0}\left(x_{i}^{\prime}\right), W_{0}\left(x_{0}^{\prime}\right), \cdots, W_{0}\left(x_{k}^{\prime}\right),<\right)$ to $\left(\bigcup_{i \leq k} W_{0}\left(x_{i}^{\prime \prime}\right), W_{0}\left(x_{0}^{\prime \prime}\right), \cdots, W_{0}\left(x_{k}^{\prime \prime}\right),<\right)$ extending the unique isomorphism:

$$
\left(\bigcup_{i \leq k} x_{i}^{\prime}, x_{0}^{\prime}, \cdots, x_{k}^{\prime},<\right) \simeq\left(\bigcup_{i \leq k} x_{i}^{\prime \prime}, x_{0}^{\prime \prime}, \cdots, x_{k}^{\prime \prime},<\right)
$$

Since $x_{j}^{\prime \prime}=x_{j}^{\prime}$ and h sends $W_{0}\left(x_{j}^{\prime}\right)$ onto $W_{0}\left(x_{j}^{\prime \prime}\right)$, we know $h \upharpoonright W_{0}\left(x_{j}^{\prime}\right)$ is the identity function on $W_{0}\left(x_{j}^{\prime}\right)$. Therefore, $W_{0}\left(x_{j}^{\prime}\right) \supset \bigcap_{x^{\prime} \in X^{\prime}} W_{0}\left(x^{\prime}\right)=h\left(\bigcap_{x^{\prime} \in X^{\prime}} W_{0}\left(x^{\prime}\right)\right)=$ $\bigcap_{x^{\prime \prime} \in X^{\prime \prime}} W_{0}\left(x^{\prime \prime}\right)$.

Finally, using $\lambda_{0} \rightarrow\left(\aleph_{1}\right)_{2 \omega}^{2 d}$ we apply Claim 2.6 with $E^{*}=E_{0}, \kappa=\lambda_{0}, \kappa_{0}=\omega_{1}$ and $W^{\prime}=W$ to get $E \subset E_{0}$ of order type ω_{1} such that CL.1, CL.2, CL. 4 hold for E and W. CL. 3 also holds by Claim 2.7.

Let $G \subset \mathbb{P}$ be generic over V. In $V[G]$, suppose $f: \bigoplus_{i<\lambda} \mathbb{N} \rightarrow r$ is the given coloring. Define $d_{i}:[\lambda]^{r+i} \rightarrow r$ such that $d_{i}(\bar{a})=f\left(s_{i} * \bar{a}\right)$ for $i \leq r$. Let \dot{d}_{i} for $i \leq r$ be the corresponding names.

Back in V, apply Lemma 2.4 to $d=2 r$ and $\left\langle\dot{d}_{i}: i \leq r\right\rangle$, and find the desired E and W (strictly speaking, we should apply to the sequence $\left\langle\dot{d}_{i+r}^{\prime}: i \leq r\right\rangle$ where $\dot{d}_{i+r}^{\prime}=\dot{d}_{i}$ for $i \leq r)$. Enumerate E increasingly as $\left\{e_{i}: i \in \omega_{1}\right\}$. Let $A_{i}=\left\{e_{\omega \cdot i+j}: 1 \leq j \leq \omega\right\}$ for each $i<r$. For each $i<r, j \leq \omega$, let $\alpha_{j}^{i}=e_{\omega \cdot i+(1+j)}$.
Definition 2.10. For any $l \leq r$ and any tuple $\bar{s} \in \Pi_{i<l}\left[A_{i}\right]^{2} \times \Pi_{i \geq l, i<r} A_{i}$, we naturally identify \bar{s} as an $(r+l)$-tuple. To be more concrete, we take 2 elements from each of the first l sets ordered naturally and 1 element from each of the remaining sets.
(1) \bar{s} is l-canonical if \bar{s} is of the form

$$
\left(\alpha_{i_{0}}^{0}, \alpha_{i_{0}^{\prime}}^{0}, \cdots, \alpha_{i_{l-1}}^{l-1}, \alpha_{i_{l-1}^{\prime}}^{l-1}, \alpha_{i_{l}}^{l}, \alpha_{i_{l+1}}^{l+1}, \cdots, \alpha_{i_{r-1}}^{r-1}\right)
$$

such that for any $k<l, i_{k}<i_{k}^{\prime} \leq \omega$ and $\max \left\{i_{m}: m<r, i_{m}<\omega\right\}<i_{k}^{\prime}$ for any $k<l$. If, in addition, we are given a sequence $\left\langle D_{i} \subset A_{i}: i<r\right\rangle$, then we say \bar{s} is from $\left\langle D_{i}: i<r\right\rangle$ if $\bar{s} \in \Pi_{i<l}\left[D_{i}\right]^{2} \times \Pi_{i \geq l, i<r} D_{i}$.
(2) We call $\bar{i}=\left\langle i_{k}: k<r\right\rangle$ the index of an l-canonical tuple \bar{s}. \bar{s} is index-strictly-increasing if whenever $k<k^{\prime}<r, i_{k} \leq i_{k^{\prime}}$ and if $i_{k} \in \omega$, then $i_{k}<i_{k^{\prime}}$.
(3) For any two ordinals α, α^{\prime}, let $\bar{s}_{\alpha \rightarrow \alpha^{\prime}}$ denote the tuple obtained by replacing the occurrence of α in \bar{s} by α^{\prime}. Similarly for any two sequences of ordinals
$\bar{\alpha}, \bar{\alpha}^{\prime}$ of the same length, $\bar{s}_{\bar{\alpha} \rightarrow \bar{\alpha}^{\prime}}$ denotes the tuple obtained by replacing the occurence of α_{i} in \bar{s} by α_{i}^{\prime} for each $i<|\bar{\alpha}|$.
Notation 2.11. Many times in what follows, we confuse a tuple with the set that consists of elements from the tuple, namely $\bar{s}=\left\langle s_{i}: i<n\right\rangle$ is identified with $\left\{s_{i}\right.$: $i<n\}$. It can be mostly inferred from the context, for example $W(\bar{s})=W\left(\left\{s_{i}\right.\right.$: $i<n\})$ and $W(\bar{s} \cap \bar{t})=W\left(\left\{s_{i}: i<n\right\} \cap\left\{t_{j}: j<m\right\}\right)$ where $\bar{t}=\left\langle t_{j}: j<m\right\rangle$.
Claim 2.12. In $V[G]$, for any $j<r$ and for any finite $B_{i} \subset A_{i}$ with $a_{\omega}^{i} \in B_{i}$ for $i<r$, there exists arbitrarily large $\alpha \in A_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}$ such that $\alpha>B_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}$ and the following is true: for any $l \leq r$, any l-canonical tuple \bar{s} from $\left\langle B_{i}: i<r\right\rangle$ containing $\alpha_{\omega}^{j}, d_{l}\left(\bar{s}^{\prime}\right)=d_{l}(\bar{s})$ where $\bar{s}^{\prime}=\bar{s}_{\alpha_{\omega}^{j} \rightarrow \alpha}$.
Proof. Fix $j<r$. Work in V. For any given $p \in \mathbb{P}$ and $\gamma \in A_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}$, we want to find $p^{\prime} \leq p$ and $\alpha>\max \left\{\gamma, \max B_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}\right\}$ in $A_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}$ such that p^{\prime} forces the conclusion above is true for this α. This clearly suffices by the density argument.

Given $p \in \mathbb{P}$, extending it if necessary, we may assume that for each $l \leq r$ and each l-canonical tuple \bar{s} from $\left\langle B_{i}: i<r\right\rangle, p \upharpoonright W(\bar{s})$ decides the value of $\dot{d}_{l}(\bar{s})$. Find $\alpha \in A_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}$ large enough such that

- $\alpha>\max \left\{\max B_{j} \backslash\left\{\alpha_{\omega}^{j}\right\}, \gamma\right\}$
- $\operatorname{dom}(p) \cap(W(u \cup\{\alpha\})-W(u))=\emptyset$ for all $u \in\left[\bigcup_{i<r} B_{i}\right]^{\leq 2 r-1}$.

This is possible since $\operatorname{dom}(p)$ is finite and for any fix $u \in\left[\bigcup_{i<r} B_{i}\right]^{\leq 2 r-1}$, $W(u \cup$ $\{\alpha\}) \cap W\left(u \cup\left\{\alpha^{\prime}\right\}\right)=W(u)$ for any $\alpha \neq \alpha^{\prime}>\max u+1$.

Define $p^{\prime}=p \cup \bigcup_{l \leq r}\left\{h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright W(\bar{s})): \bar{s}\right.$ is an l-canonical tuple from $\left\langle B_{i}\right.$: $i<r\rangle, \alpha_{\omega}^{j} \in \bar{s}$, and $\left.\bar{s}^{\prime}=\bar{s}_{\alpha_{\omega}^{j} \rightarrow \alpha}\right\}$. We claim that p^{\prime} is the desired condition. To verify this, it suffices to show the following:
(1) p^{\prime} is a condition. We do this by showing for p is compatible with $h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright$ $W(\bar{s}))$ and $h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright W(\bar{s}))$ is compatible with $h_{W(\bar{t}), W\left(\bar{t}^{\prime}\right)}(p \upharpoonright W(\bar{t}))$ for each \bar{s}, \bar{t} as above.

- Fix \bar{s}. To see p is compatible with $p^{*}=_{\operatorname{def}} h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright W(\bar{s}))$, notice that $\operatorname{dom}(p) \cap \operatorname{dom}\left(p^{*}\right) \subset \operatorname{dom}(p) \cap W\left(\bar{s}^{\prime}\right) \subset W\left(\bar{s}^{\prime}-\{\alpha\}\right)$ by the choice of α. By CL. $4, h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)} \upharpoonright W\left(\bar{s}-\left\{\alpha_{\omega}^{j}\right\}\right)$ is the identity function on $W\left(\bar{s}-\left\{\alpha_{\omega}^{J}\right\}\right)$ since $\left(\bar{s}, \bar{s}-\left\{\alpha_{\omega}^{j}\right\},<\right) \simeq\left(\bar{s}^{\prime}, \bar{s}^{\prime}-\{\alpha\},<\right)$ and $\bar{s}-\left\{\alpha_{\omega}^{j}\right\}=\bar{s}^{\prime}-\{\alpha\}$. Hence $p^{*} \upharpoonright W\left(\bar{s}^{\prime}-\{\alpha\}\right)=p \upharpoonright W\left(\bar{s}-\left\{\alpha_{\omega}^{j}\right\}\right)=$ $p \upharpoonright W\left(\bar{s}^{\prime}-\{\alpha\}\right)$.
- Fix \bar{s}, \bar{t} as above. Let $q_{0}={ }_{\operatorname{def}} h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright W(\bar{s})), q_{1}=\operatorname{def} h_{W(\bar{t}), W\left(\bar{t}^{\prime}\right)}(p \mid$ $W(\bar{t}))$. Notice that $\operatorname{dom}\left(q_{0}\right) \cap \operatorname{dom}\left(q_{1}\right) \subset W\left(\bar{s}^{\prime}\right) \cap W\left(\bar{t}^{\prime}\right)=W\left(\bar{s}^{\prime} \cap \bar{t}^{\prime}\right)=$ $W\left((\bar{s} \cap \bar{t})_{\alpha_{\omega}^{j} \rightarrow \alpha}\right)$. Observe that $(\bar{s}, \bar{s} \cap \bar{t},<) \simeq\left(\bar{s}^{\prime}, \bar{s}^{\prime} \cap \bar{t}^{\prime},<\right)$ and $(\bar{t}, \bar{s} \cap \bar{t},<$ $) \simeq\left(\bar{t}^{\prime}, \bar{s}^{\prime} \cap \bar{t}^{\prime},<\right)$. By CL. 4 , we have $h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(W(\bar{s} \cap \bar{t}))=W\left(\bar{s}^{\prime} \cap \bar{t}^{\prime}\right)$ and $h_{W(\bar{t}), W\left(\bar{t}^{\prime}\right)}(W(\bar{s} \cap t))=W\left(\bar{s}^{\prime} \cap \bar{t}^{\prime}\right)$. Hence $q_{0} \upharpoonright W\left((\bar{s} \cap \bar{t})_{\alpha_{\omega}^{j} \rightarrow \alpha}\right)=$ $h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright W(\bar{s} \cap \bar{t}))=h_{W\left(\bar{s} \cap \bar{t}, W\left(\bar{s}^{\prime} \cap \bar{t}^{\prime}\right)\right.}(p \upharpoonright W(\bar{s} \cap \bar{t}))$ and $q_{1} \upharpoonright$ $W\left((\bar{s} \cap \bar{t})_{\alpha_{\omega}^{j} \rightarrow \alpha}\right)=h_{W(\bar{t}), W\left(\bar{t}^{\prime}\right)}(p \upharpoonright W(\bar{s} \cap \bar{t}))=h_{W(\bar{s} \cap \bar{t}), W\left(\bar{s}^{\prime} \cap \bar{t}^{\prime}\right)}(p \upharpoonright$ $W(\bar{s} \cap \bar{t}))$. Since q_{0} and q_{1} agree on their common domain, it follows that they are compatible.
(2) p^{\prime} forces $\dot{d}_{l}(\bar{s})=\dot{d}_{l}\left(\bar{s}^{\prime}\right)$ for any l-canonical tuple \bar{s} from $\left\langle B_{i}: i<r\right\rangle$ containing α_{ω}^{j} where $\bar{s}^{\prime}=\bar{s}_{\alpha_{\omega}^{j} \rightarrow \alpha}$ for any $l \leq r$. Fix l and \bar{s}. By the initial assumption about p, we know there exists $n<r$ such that $p \upharpoonright W(\bar{s}) \Vdash \dot{d}_{l}(\bar{s})=n$. By CL. $2 h_{W(\bar{s}), W\left(\bar{s}^{\prime}\right)}(p \upharpoonright W(\bar{s})) \Vdash \dot{d}_{l}\left(\bar{s}^{\prime}\right)=n$. Hence $p^{\prime} \Vdash \dot{d}_{l}\left(\bar{s}^{\prime}\right)=n=$ $\dot{d}_{l}(\bar{s})$.

Claim 2.13. There exist $C^{i} \subset A_{i}$ containing α_{ω}^{i} for $i<r$ such that
(1) for each $i<r$, type $\left(C^{i}\right)=\omega+1$
(2) for each $l \leq r$ and each index-strictly-increasing l-canonical tuple

$$
\bar{s}=\left(\alpha_{i_{0}}^{0}, \alpha_{i_{0}^{\prime}}^{0}, \cdots, \alpha_{i_{l-1}}^{l-1}, \alpha_{i_{l-1}^{\prime}}^{l-1}, \alpha_{i_{l}}^{l}, \alpha_{i_{l+1}}^{l+1}, \cdots, \alpha_{i_{r-1}}^{r-1}\right)
$$

from $\left\langle C^{i}: i<r\right\rangle, d_{l}(\bar{s})=d_{l}\left(\bar{s}^{\prime}\right)$, where

$$
\bar{s}^{\prime}=\left(\alpha_{i_{0}}^{0}, \alpha_{\omega}^{0}, \cdots, \alpha_{i_{l-1}}^{l-1}, \alpha_{\omega}^{l-1}, \alpha_{\omega}^{l}, \alpha_{\omega}^{l+1}, \cdots, \alpha_{\omega}^{r-1}\right)
$$

In particular, the color \bar{s} gets under d_{l} only depends on its index.
Proof. We will build these sets in ω-steps. We will pick one point at a time from sets listed in the following order:

$$
A_{0}, A_{1}, \cdots, A_{r-1}, A_{0}, A_{1}, \cdots, A_{r-1}, A_{0}, A_{1}, \cdots, A_{r-1}, \cdots
$$

In particular, we will find $J^{i}=\left\{j_{k}^{i}: k \in \omega\right\} \subset \omega$ such that $C^{i}=\left\{\alpha_{j_{k}^{i}}^{i}: k \in\right.$ $\omega\} \cup\left\{\alpha_{\omega}^{i}\right\}$ for each $i<r$. For fixed i, k, let C_{k}^{i} denote $\left\{\alpha_{j_{k^{\prime}}^{i}}^{i}: k^{\prime}<k\right\} \cup\left\{\alpha_{\omega}^{i}\right\}$.

Recall $C_{0}^{i}=\left\{\alpha_{\omega}^{i}\right\}$ for all $i<r$. Recursively, suppose for some $i<r$ and $k \in \omega$ we have defined C_{q}^{p} for all $\langle q, p\rangle<_{l e x}\langle k, i\rangle$ (i.e. either $q<k$ or $q=k$ and $p<i$). Apply Claim 2.12 to pick $j_{k}^{i} \in \omega$ such that

- $j_{k}^{i}>j_{q}^{p}$ for all $\langle q, p\rangle<_{l e x}\langle k, i\rangle$
- for any $l \leq r$ and any l-canonical tuple \bar{s} containing α_{ω}^{i} from $\left\langle C_{k_{p}}^{p}: p<r\right\rangle$ where $k_{p}=k$ if $p<i$ and $k_{p}=k-1$ if $p \geq i$, it is true that $d_{l}(\bar{s})=$ $d_{l}\left(\bar{s}_{\alpha_{\omega}^{i} \rightarrow \alpha_{j_{k}^{i}}^{i}}\right)$.
We now verify that $\left\langle C^{i}: i<r\right\rangle$ satisfies (2). Fix $l \leq r$ and some index-strictlyincreasing l-canonical tuple \bar{s} from $\left\langle C^{i}: i<r\right\rangle$, say

$$
\bar{s}=\left(\alpha_{i_{0}}^{0}, \alpha_{i_{0}^{\prime}}^{0}, \cdots, \alpha_{i_{l-1}}^{l-1}, \alpha_{i_{l-1}^{\prime}}^{l-1}, \alpha_{i_{l}}^{l}, \alpha_{i_{l+1}}^{l+1}, \cdots, \alpha_{i_{r-1}}^{r-1}\right) .
$$

By the hypothesis, we know $\max \left\{i_{m}: m<r, i_{m}<\omega\right\}<i_{k}^{\prime}$ for any $k<l$. By the conclusion of Claim 2.12 and the index management in our recursive process, we know that

$$
d_{l}(\bar{s})=d_{l}\left(\alpha_{i_{0}}^{0}, \alpha_{\omega}^{0}, \cdots, \alpha_{i_{l-1}}^{l-1}, \alpha_{\omega}^{l-1}, \alpha_{\omega}^{l}, \alpha_{\omega}^{l+1}, \cdots, \alpha_{\omega}^{r-1}\right) .
$$

By Claim 2.13, we may without loss of generality assume that the sets $\left\langle A_{i}: i<r\right\rangle$ already satisfy that: for each $l \leq r$, for each index-strictly-increasing l-canonical tuple \bar{s} from $\left\langle A_{i}: i<r\right\rangle$ satisfies (2) in the conclusion of Claim 2.13

To finish the proof, we basically need similar arguments as in Claim 2.9 and Step 5 from [8]. We supply a proof for completeness.

Claim 2.14. There exist $\left\langle B_{i} \subset A_{i}: i<r, \alpha_{\omega}^{i} \in B_{i}\right.$, type $\left.\left(B_{i}\right)=\omega+1\right\rangle$ and $\left\langle\rho_{l}<r: l \leq r\right\rangle$ such that for each $l \leq r$, for each index-strictly-increasing l canonical tuple \bar{s} from $\left\langle B_{i}: i<r\right\rangle, d_{l}(\bar{s})=\rho_{l}$.
Proof. Fix $l \leq r, W \in[\omega]^{\aleph_{0}}$. Define $g:[W]^{l} \rightarrow r$ such that for each $\bar{i}=\left\{i_{0}<i_{1}<\right.$ $\left.\cdots<i_{l-1}\right\}$,

$$
g(\bar{i})=d_{l}\left(\alpha_{i_{0}}^{0}, \alpha_{\omega}^{0}, \cdots, \alpha_{i_{l-1}}^{l-1}, \alpha_{\omega}^{l-1}, \alpha_{\omega}^{l}, \alpha_{\omega}^{l+1}, \cdots, \alpha_{\omega}^{r-1}\right)
$$

Let $I \in[W]^{\aleph_{0}}$ be a monochromatic subset with color ρ_{l} for g. For any index-strictly-increasing l-canonical tuple

$$
\bar{s}=\left(\alpha_{j_{0}}^{0}, \alpha_{j_{0}^{\prime}}^{0}, \cdots, \alpha_{j_{l-1}}^{l-1}, \alpha_{j_{l-1}^{\prime}}^{l-1}, \alpha_{j_{l}}^{l}, \alpha_{j_{l+1}}^{l+1}, \cdots, \alpha_{j_{r-1}}^{r-1}\right)
$$

such that $j_{k}, j_{t}^{\prime} \in I \cup\{\omega\}$ for any $k<r$ and $t<l$, by Claim 2.13 and the remark that follows, we know that
$d_{l}(\bar{s})=d_{l}\left(\alpha_{j_{0}}^{0}, \alpha_{\omega}^{0}, \cdots, \alpha_{j_{l-1}}^{l-1}, \alpha_{\omega}^{l-1}, \alpha_{\omega}^{l}, \alpha_{\omega}^{l+1}, \cdots, \alpha_{\omega}^{r-1}\right)=g\left(\left\{j_{0}<\cdots<j_{l-1}\right\}\right)=\rho_{l}$.
To get the conclusion of the claim, apply the procedure above repeatedly to get $\omega \supset I_{0} \supset I_{1} \supset \cdots \supset I_{r-1} \supset I_{r}$. It is clear that $B_{i}=\left\{\alpha_{j}^{i}: j \in I_{r}\right\} \cup\left\{\alpha_{\omega}^{i}\right\}$ for $i<r$ will be the desired sets.

By Claim 2.14, we may without loss of generality assume that the sets $\left\langle A_{i}: i<r\right\rangle$ already satisfy that: there exist $\left\langle\rho_{l}: l \leq r\right\rangle$ such that for each $l \leq r$, for each index-strictly-increasing l-canonical tuple \bar{s} from $\left\langle A_{i}: i\langle r\rangle, d_{l}(\bar{s})=\rho_{l}\right.$. By the Pigeon hole principle, there exist $l^{\prime}<l$ such that $\rho_{l^{\prime}}=\rho_{l}=\rho$.

Claim 2.15. There exists an infinite X such that $f \upharpoonright X+X \equiv \rho$.
Proof. For $i<\omega$, let

$$
\begin{array}{r}
\bar{a}_{i}=\left(\alpha_{0}^{0}, \alpha_{\omega}^{0}, \alpha_{1}^{1}, \alpha_{\omega}^{1}, \cdots, \alpha_{l^{\prime}-1}^{l^{\prime}-1}, \alpha_{\omega}^{l^{\prime}-1}\right. \\
\alpha_{l^{\prime}+i \cdot\left(l-l^{\prime}\right)}^{l^{\prime}}, \alpha_{l^{\prime}+1+i \cdot\left(l-l^{\prime}\right)}^{l^{\prime}+1}, \cdots, \alpha_{l-1+i \cdot\left(l-l^{\prime}\right)}^{l-1}, \\
\left.\alpha_{\omega}^{l}, \cdots, \alpha_{\omega}^{r-1}\right),
\end{array}
$$

namely, we take
(1) $\left\{\alpha_{k}^{k}, \alpha_{\omega}^{k}\right\}$ from A_{k} for each $k<l^{\prime}$
(2) $\left\{\alpha_{k+i\left(l-l^{\prime}\right)}^{k}\right\}$ from A_{k} for each $k \geq l^{\prime}$ and $k<l$
(3) $\left\{\alpha_{\omega}^{k}\right\}$ from A_{k} for each $k \geq l$.

Define $x_{i}=\frac{1}{2} s_{l^{\prime}} * \bar{a}_{i}$. For $i<j \in \omega$, consider

$$
\begin{array}{r}
\bar{b}_{i, j}=\left(\alpha_{0}^{0}, \alpha_{\omega}^{0}, \cdots, \alpha_{l^{\prime}-1}^{l^{\prime}-1}, \alpha_{\omega}^{l^{\prime}-1}\right. \\
\alpha_{l^{\prime}+i \cdot\left(l-l^{\prime}\right)}^{l^{\prime}}, \alpha_{l^{\prime}+j \cdot\left(l-l^{\prime}\right)}^{l^{\prime}}, \cdots \alpha_{l-1+i \cdot\left(l-l^{\prime}\right)}^{l-1}, \alpha_{l-1+j \cdot\left(l-l^{\prime}\right)}^{l-1}, \\
\left.\alpha_{\omega}^{l}, \cdots, \alpha_{\omega}^{r-1}\right),
\end{array}
$$

namely, we take
(1) $\left\{\alpha_{k}^{k}, \alpha_{\omega}^{k}\right\}$ from A_{k} for each $k<l^{\prime}$
(2) $\left\{\alpha_{k+i\left(l-l^{\prime}\right)}^{k}, \alpha_{k+j\left(l-l^{\prime}\right)}^{k}\right\}$ from A_{k} for each $k \geq l^{\prime}$ and $k<l$
(3) $\left\{\alpha_{\omega}^{k}\right\}$ from A_{k} for each $k \geq l$.

It is not hard to notice that $x_{i}+x_{j}=s_{l} * \bar{b}_{i, j}$.
For any $i<j \in \omega, \bar{a}_{i}\left(\bar{b}_{i, j}\right.$ respectively) is easily seen to be an index-strictlyincreasing l^{\prime}-canonical (l-canonical) tuple. Therefore, $f\left(2 x_{i}\right)=f\left(s_{l^{\prime}} * \bar{a}_{i}\right)=d_{l^{\prime}}\left(\bar{a}_{i}\right)=$ $\rho_{l^{\prime}}=\rho$ and $f\left(x_{i}+x_{j}\right)=f\left(s_{l} * \bar{b}_{i, j}\right)=d_{l}\left(\bar{b}_{i, j}\right)=\rho_{l}=\rho$. We conclude that $X=\left\{x_{i}: i \in \omega\right\}$ is the set as desired.

Claim 2.15 finishes the proof of (1).

Proof of part [2). We prove a stronger statement: $\bigoplus_{i<\omega_{1}} \mathbb{N} \rightarrow^{+}\left(\aleph_{0}\right)_{2}$. To see this, for any such f, let $d_{i}(\bar{a})=f\left(s_{i} * \bar{a}\right)$ be defined as before for $i<3$. In particular, the domain of d_{i} is $\left[\omega_{1}\right]^{i+2}$ for $i<3$. Apply the Dushnik-Miller theorem (see Theorem 11.3 in [2]) to get $A=\left\{\alpha_{j}: j \leq \omega\right\} \in\left[\omega_{1}\right]^{\omega+1}$ such that $d_{i} \upharpoonright[A]^{i+2} \equiv \rho_{i}<2$ for all $i<3$. By the Pigeon hole principle we have the following cases and we will define $X=\left\{x_{i}: i \in \omega\right\}$ for each case.
(1) $\rho_{0}=\rho_{1}=\rho$. Let $x_{i}=\frac{1}{2} s_{0} *\left(\alpha_{i}, \alpha_{\omega}\right)$. Then $f\left(2 x_{i}\right)=f\left(s_{0} *\left(\alpha_{i}, \alpha_{\omega}\right)\right)=$ $d_{0}\left(\alpha_{i}, \alpha_{\omega}\right)=\rho_{0}=\rho$. For any $i<j \in \omega, f\left(x_{i}+x_{j}\right)=f\left(s_{1} *\left(\alpha_{i}, \alpha_{j}, \alpha_{\omega}\right)\right)=$ $d_{1}\left(\alpha_{i}, \alpha_{j}, \alpha_{\omega}\right)=\rho_{1}=\rho$.
(2) $\rho_{0}=\rho_{2}=\rho$. Let $x_{i}=\frac{1}{2} s_{0} *\left(\alpha_{2 i}, \alpha_{2 i+1}\right)$. Then $f\left(2 x_{i}\right)=f\left(s_{0} *\left(\alpha_{2 i}, \alpha_{2 i+1}\right)\right)=$ $d_{0}\left(\alpha_{2 i}, \alpha_{2 i+1}\right)=\rho_{0}=\rho$. For any $i<j \in \omega, f\left(x_{i}+x_{j}\right)=f\left(s_{2} *\right.$ $\left.\left(\alpha_{2 i}, \alpha_{2 i+1}, \alpha_{2 j}, \alpha_{2 j+1}\right)\right)=d_{2}\left(\alpha_{2 i}, \alpha_{2 i+1}, \alpha_{2 j}, \alpha_{2 j+1}\right)=\rho_{2}=\rho$.
(3) $\rho_{2}=\rho_{1}=\rho$. Let $x_{i}=\frac{1}{2} s_{0} *\left(\alpha_{0}, \alpha_{1}, \alpha_{i+2}\right)$. Then $f\left(2 x_{i}\right)=f\left(s_{0} *\right.$ $\left.\left(\alpha_{0}, \alpha_{1}, \alpha_{i+2}\right)\right)=d_{0}\left(\alpha_{0}, \alpha_{1}, \alpha_{i+2}\right)=\rho_{0}=\rho$. For any $i<j \in \omega, f\left(x_{i}+x_{j}\right)=$ $f\left(s_{2} *\left(\alpha_{0}, \alpha_{1}, \alpha_{i+2}, \alpha_{j+2}\right)\right)=d_{2}\left(\alpha_{0}, \alpha_{1}, \alpha_{i+2}, \alpha_{j+2}\right)=\rho_{2}=\rho$.

Clearly the proof above does not generalize to the case when $r=3$ since $2^{\omega} \nrightarrow$ $(\omega+2)_{2}^{3}$. A more fundamental restriction is that by a result of Hindman, Leader and Strauss [5], there exists some $r \in \omega$ such that $\bigoplus_{i<\omega_{1}} \mathbb{N} \nrightarrow^{+}\left(\aleph_{0}\right)_{r}$.

References

[1] M. Džamonja, J. A. Larson, and W. J. Mitchell. A partition theorem for a large dense linear order. Israel J. Math., 171:237-284, 2009.
[2] Paul Erdős, András Hajnal, Attila Máté, and Richard Rado. Combinatorial set theory: partition relations for cardinals, volume 106 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1984.
[3] David Fernández-Bretón and Assaf Rinot. Strong failures of higher analogs of Hindman's theorem. Trans. Amer. Math. Soc., 369(12):8939-8966, 2017.
[4] Neil Hindman. Partitions and sums of integers with repetition. J. Combin. Theory Ser. A, 27(1):19-32, 1979.
[5] Neil Hindman, Imre Leader, and Dona Strauss. Pairwise sums in colourings of the reals. Abh. Math. Semin. Univ. Hambg., 87(2):275-287, 2017.
[6] Leader Imre and Paul A. Russell. Monochromatic infinite sumsets. preprint. https://arxiv. org/abs/1707.08071
[7] Péter Komjáth. A certain 2-coloring of the reals. Real Anal. Exchange, 41(1):227-231, 2016.
[8] Péter Komjáth, Imre Leader, Paul A. Russell, Saharon Shelah, Dániel T. Soukup, and Zoltán Vidnyánszky. Infinite monochromatic sumsets for colourings of the reals. Proc. Amer. Math. Soc. to appear, https://arxiv.org/abs/1710.07500
[9] S. Shelah. Strong partition relations below the power set: consistency; was Sierpiński right? II. In Sets, graphs and numbers (Budapest, 1991), volume 60 of Colloq. Math. Soc. János Bolyai, pages 637-668. North-Holland, Amsterdam, 1992.
[10] Saharon Shelah. Consistency of positive partition theorems for graphs and models. In Set theory and its applications (Toronto, ON, 1987), volume 1401 of Lecture Notes in Math., pages 167-193. Springer, Berlin, 1989.
[11] D. T. Soukup and W. Weiss. Sums and anti-ramsey colourings of \mathbb{R}. preprint. http://www. logic.univie.ac.at/~soukupd73/finset_colouring.pdf
[12] Jing Zhang. A tail cone version of the Halpern-Läuchli theorem at a large cardinal. The Journal of Symbolic Logic. to appear, https://arxiv.org/abs/1704.06827.

Department of Mathematical Sciences,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, 15213
E-mail: jingzhang@cmu.edu

[^0]: 2010 Mathematics Subject Classification. Primary: 03E02, 03E35, 03E55. I thank Dániel Soukup for telling me about this problem and sharing his insights. I thank the organizers and the participants of the SETTOP 2018 conference in Novi Sad during which part of this work was done. I thank the Department of Mathematical Sciences of Carnegie Mellon University and the US tax payers for its generous support for me to attend SETTOP 2018. I thank James Cummings and Sittinon Jirattikansakul for helpful discussions and comments.

