MONOCHROMATIC SUMSET WITHOUT THE USE OF LARGE
CARDINALS

JING ZHANG

ABSTRACT. We show in this note that in the forcing extension by Add(w, ),
the following Ramsey property holds: for any r € w and any f : R — r, there
exists an infinite X C R such that X + X is monochromatic under f. We also
show the Ramsey statement above is true in ZFC when r = 2. This answers
two questions from [§].

1. INTRODUCTION

Definition 1.1. Let (A,+) be an additive structure and x,r be cardinals. Let
A —7T (k), abbreviate the statement: for any f : A — r, there exists X C A with
|X| = & such that X + X =45 {a+b:a,b € X} is monochromatic under f.

There have been recent developments on additive partition relations for real
numbers. Hindman, Leader and Strauss [5] showed that if 2¢ < X, then there
exists some 7 € w such that R 47 (¥g),. On the other hand, Komjath, Leader,
Russell, Shelah, Soukup and Vidnyanszky [8] showed that relative to the existence
of an wy-Erd8s cardinal, it is consistent that for any 7 € w, R =T (Xg),. These
results are optimal in a sense as there exist the following restrictions:

(1) Komjéth [7] and independently Soukup and Weiss [I1] showed that R /4T
(R1)2;

(2) Soukup and Vidnyédnszky showed there exists a finite coloring of f on R
such that no infinite X C R satisfies that X + --- 4+ X is monochromatic

k
for k > 3.

It should be emphasized that the difficulty comes from the fact that repetitions
are allowed. If we only want some infinite X C R such that X ¢ X = {a + b :
a # b € X} is monochromatic, then the classical Ramsey theorem implies this
already. In fact, Hindman’s finite-sum theorem is a much stronger Ramsey-type
statement: any finite coloring of N, there exists some infinite X C N such that
FS(X) =ges {Xo<i<kai : {ao, a1, ,ar_1} € [X]<¥} is monochromatic. However,
if repeated sums are allowed, things turn towards the other direction: Hindman [4]
showed N A1 (Rg)3 and Owings asked (and it is still open) that if N A1 (Rg)q is
true. Interestingly, Ferndndez-Bretén and Rinot [3] showed that the uncountable
analogs of Hindman’s theorem must necessarily fail in a strong way.
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The following questions among others were asked by the authors of [§].

(1) Is the use of large cardinals necessary to establish the consistency R —7
(Ng), for all r € w?
(2) Is R =T (Rg)2 true in ZFC?

We answer the first question negatively and the second positively.

Theorem 1.1. (1) In the forcing extension by Add(w,3,), R =1 (Rg), for
any r e w.
(2) R =+ (No)g.

Remark 1.2. The continuum in the model of [§] is an R-fixed point, which is very
large. Over a ground model of GCH, Theorem suggests that the most natural
way to eliminate the obstacles from cardinal arithmetic works since by a result of
Hindman, Leader and Strauss [5], if R =T (Rg), for all r < w, then 2% > R, ;.

Notation 1.3. We will identify (R,+), as a vector space over Q, with @, _,. Q.
The latter is the direct sum of 2* copies of (Q,+). More concretely, any s €
P, 2. (Q,+) is a finitely supported function whose range is contained in Q. The
addition on the direct sum is defined coordinate-wise. Similarly for some cardinal
K, @, N is the direct sum of x copies of (N,+). It is easy to see that if x < 2,
@, .. N is an additive substructure of R.

2. THE PROOF OF THEOREM [L.1]

First we prove part . Let A =3, and P = Add(w, \). In fact, we show that
in VF, @D, N =T (Ng), for any r € w.

Definition 2.1. Suppose W, W’ C X are such that type(W) = type(W’). Let
hw,w: : W — W’ be the unique order isomorphism. For A, A’ C X with type(A) =
type(A’), ha a naturally induces a map from P | AtoP [ A’ whereanyp € P [ Ais
mapped to p’ € P | A’ such that dom(p') = hZ}A,(dom(p)) and p'(j) = p(hZ}A, (4))-
We will abuse the notation by using ha 4/ to denote the induced map from P [ A
to P | A’. This can be easily inferred from the context.

Definition 2.2 ([6],[5],[8]). For any r > 2, define a sequence of finite strings of
natural numbers (s; : I < r) such that for each | < r, |s;] = r + 1 and s;(k) =

2 itk <2l
s ~ In other words, each s; is formed by 2] many 2’s followed by r — [
4 otherwise.

many 4’s.

Definition 2.3 (The star operation, see [6],[8]). Let K be either N or Q. For
k€ w,sc (K—{0})* and a finite subset of ordinals a = {& : i < k} . C A, let sxa
denote the function from A to K supported on a that sends &; to s(i).

We will use the following combinatorial lemma due to Shelah [10], [9].

Lemma 2.4 (The higher dimensional A-system lemma). Fiz r,d € w. Let (d; :
AP — r|i < d} be a sequence of P-names for colorings. Then there exists E C \ of
order type wy and W : [E]S% — [A\|=X0 such that
CL.1 For allu € [E]=¢, u C W(u) and P | W(u) contains a mazimal antichain
deciding the value of dy)(u).
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CL.2 For any u,v € [E|=? such that |u| = |v|, type(W(u)) = type(W (v)),
hw (w),w () (u) = v and for any p € P | W(u), for anyn <r, pl- d‘u|( u) =
n & hw (), w ) (p) Ik djy (v) = n.

CL.3 For any u,v € [E]=4, W(u) N W (v) = W(unwv).

CL.4 For any uy C ug,u) C uh where ug,ub € [E]S%, if (ug,ur, <) = (uh, u}, <),
then hW(ug),W(ué) [ W(ul) = hW(ul),W(u’l)'

Remark 2.5. Different versions of Lemma appeared in [10], Lemma 4.1 of [9],
Claim 7.2.a of [I] and the appendix of [I12]. We will use the fact that A = 3, to
present a slightly simpler proof, following the arguments presented in Claim 7.2.a
of [1]. More speciﬁcally, we will take advantage of the following fact: there exists
Ao such that A — (Xg)32 and Mg — (R;)32. This statement is the only fact about
A we will use in the proof. In fact, that A — (X;)3¢ suffices to get the conclusion
of Lemma [2:4] but the proof is slightly more complicated. The interested readers
are directed to the proofs in Claim 7.2.a of [1] (for [CL.1JCL.2[CL.3) and in the

appendix of [12] (for (CL.4)).

Proof. Fix r,d € w and (d; : i < d+ 1) as in Lemma and Ao as in Remark
Call a function f monotone if whenever v C v € dom(f), we have f(u) C f(v).

Claim 2.6. For any E* C \ of order type k < \, ko > wy such that k — (kg)3d
and any monotone W' : [E*]=4 — [N]SR such that for all u € [E*]=¢, u C W' (u)
and P | W/(u) contains a mazimal antichain deciding the value of d‘u|(u), there
exists E' C E* of order type ko such that hold with E, W replaced by
E', W' and the following holds: for any k € w and any {u; € [E']S% : i < k} and
{v; € [B"]5 i < k}, if

(Uui7u07"' ;uk—17<) = (U Vi, Vo, « - 7vk—1a<)a

i<k i<k

then the isomorphism can be extended to one that witnesses

(U W' (ui), W (ug), -+, W (ug—1) UW Vi), vo), -, W (vp_1), <).
i<k i<k

In particular, holds with E,W replaced by E',W'.

Proof of the claim. Define an equivalence relation ~ on [E*]?? as follows: u ~ v iff
(1) whenever v € [u]<% and v’ € [v]=¢ are such that (u,v’,<) ~ (v,v/,<)
(which in particular implies there is some k < d, |u/| = |[V/| =gef k), we
have that (W' (u'), v/, <) ~ (W'(v"),v',<) and for any p € P [ W'(u') and
n<r,p I+ dk(u’) =n iff hW’(u’),W’(v/)(p) I+ dk(v’) =n.

(2) whenever ug,u; € [u]S¢ and wvo,v; € [v]S? satisfy that (u,ug,ur, <) =~
(v, vg,v1,<), then

U W(a). W' (o), W' (ur), u,uo,ur) ~ () W/(6), W' (v0), W' (v1), 0,00, 01).

a€lu]sd belv]=d

It can be easily checked that the number of equivalence classes is at most 2. By
the fact that & — (r0)3%, we can find E’ C E* of order type ko such that elements
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in [E')?¢ are mutually ~-equivalent. It is clear that [CL.1| and |[CL.2| hold. Fix
k€ wand {u; € [F']<%:i < k} and {v; € [E']=% :i < k} such that

(Uui7u07"' ;uk—17<) = (U Vi, Vo, « - 7Uk—1a<)'

i<k i<k

(2) in the definition of ~ ensures that for ¢ < j < k, by the fact that (u;Uu;, u;, uj, <
) =~ (v; Uvj,v;,v5, <), we have

(W' (i )UW' (uj), W' (wi), W (uj), wiyug, <) o2 (W (0 )UW' (), W (0;), W' (v5), 03,05, <).

Therefore, it is easy to see |, <te "W (i), W (v, €xtending the unique isomorphism
from (U, o wi> o, -+, ur—1, <) to (U; < vis o, - -+ , Uk—1, <), is an isomorphism be-
tween

(U W/(ui)v W/(UO), T Wl(uk,1)7 <)

i<k
and

(U W/(vi)’ W/(”U()), T W/(vk—l)v <)'

i<k

O

Let Wy : [\]S% — [A]=Y0 be a monotone function such that for all u € [\]<%, u C
Wo(u) and P [ Wy(u) contains a maximal antichain deciding the value of d.|u‘(u).
This is possible by the c.c.c-ness of P. Apply Claim [2.6) with E* = X\, k = X\, kg = Ao
and W' = W to get Ey C X of order type Ag.

For each u € [Eo]=¢, define W (u) =aey {Nyex Wo(v) : X C [Eo]=%, N X C u}.
Notice that for any u € [Ep]=?, Wo(u) C W (u).

Claim 2.7. (1) For any u,v € [Eg]=%, W(u) "W (v) = W (uNv) so in partic-
ular W is monotone and
(2) for any u € [Eo]=?, W (u) is a countable subset of \.

Proof of the claim. (1) immediately follows from the definition. To see (2) holds,
fix u € [Ep]=¢. First notice that in the definition of W (u), it suffices to consider
those X C [Eo]=? such that | X| < d+ 1. To see this, it suffices to note that for any
X C [Ep]=? with (X C u, there exists Y C X such that |Y|<d+1,NY =NX
(in particular, (,c x Wo(v) C N,y Wo(uw)). If [X] < d, take Y = X. Otherwise,
pick some x € X, then = € [Eg]=¢. For each ¢ € z, if € ¢ (| X, then there exists
xze € X such that { € e, Let Y = {z} U{zs : £ €  — (X }. This Y as defined
clearly satisfies the requirement.

The following suffices for the claim: for any k£ < d and any X =gc¢ {20, -+, Ts}
X' =ger {xf, -, 25} C [Eo)s? with N X, N X' Cu, ifunUX =unJX’ and

(2.8) (UX7UQUX,$0,"' Tk, <) Z(UX/,UQUXI,1'67~-‘ LTy <)

then (¢ x Wo(x) = N, cx: Wo(2'). If the assertion is true, W (u) will be a finite
union of countable sets. To see this, each structure (|JX,unUJ X, o, ,x, <) is
uniquely coded by a finite function from | J X| to 2872, Clearly the number of such
codes is finite. Structures of the same code are isomorphic in the sense of .
To prove the assertion, fix X, X’ as above and let a =unJX =unJX'. If
UX = U X', then by (2.8), X = X', we are done. So we may assume J X # |J X'
We will induct on the size of (|JX)A(JX’). Let € € UX,¢ € |JX’ be such
that (UX)N&é=UX)N& but £ € JX or & ¢ |JX. We may without loss of
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generality assume & < £'. In this case, £ € |J X’. In particular, £ ¢ 4 and by (2.8]),
i § ¢
/

¢ & a. Let X" = {af : i <k} such that z} = @ - {(ENUlE e

It is
clear that
(2.9) (UX”,uﬂUX”,xg,--~ LTy <) (UX’,uﬁUX’,xf),-~- , Ty <)

It suffices to show (V. cxn Wo(z") = Nyex: Wo(2') since [(UX)AUX")| <
[(UX)A(JX")| so we can finish by the induction hypothesis. There exists j < k
such that &' ¢ 2 since otherwise ¢’ € (X’ C uN X' = @ which cannot
be true. Thus 27 = 2. By Claim there exists an isomorphism h from
(Ui<e Wo(a), Wo(xp), -+, Wo(a,), <) to (U<, Wo(ai), Wo(a), -+, Wo(xy), <) ex-
tending the unique isomorphism:

(U x;zx/Oa"' ,$;€7<) = (U 1’;’,.736/,--- ,$Z,<).
i<k i<k
Since z7] = x’; and h sends Wy (2;) onto Wo(27)), we know h [ Wy(a’;) is the identity
function on V[l/o(z;) Therefore, Wo(z}) D Nyex: Wo(2') = hM((yex Wo(a')) =
ﬂx“EX” WO(ZE /).
(]

Finally, using Ao — (X1)2¢ we apply Claim with E* = Eg,k = Ao, kg = w1
and W/ = W to get E C Ey of order type w; such that [CL.1], [CL.2| [CL.4] hold
for E and W. also holds by Claim

O

Let G C P be generic over V. In VI[G], suppose f : P, , N — r is the given
coloring. Define d; : [\ — 7 such that d;(@) = f(s; * a) for i < r. Let d; for
i < r be the corresponding names.

Back in V, apply Lemmato d = 2r and (d; : i < r), and find the desired E and
W (strictly speaking, we should apply to the sequence (d.;_w i < r) where d;_w =d,
for i < r). Enumerate E increasingly as {e; : i € wi}. Let A; = {ew.iyj : 1 < j <w}
for each ¢ < r. For each i < r,j < w, let oz;» = €uit(144)-

Definition 2.10. For any [ < r and any tuple 5§ € II;;[4;]% X IL;>; < Ai, we
naturally identify 5 as an (r + [)-tuple. To be more concrete, we take 2 elements
from each of the first [ sets ordered naturally and 1 element from each of the
remaining sets.

(1) 5is l-canonical if § is of the form

(O‘?Ov O‘?{)v e ’O‘é;ll ) Ozi;ill,aél,ozij;ll, T :,_,11)
such that for any k < I, i, < @), < w and max{i,, : m < r,4, < w} < i, for
any k < I. If, in addition, we are given a sequence (D; C A; : ¢ < r), then
we say 5 is from (D; :i <) if 5 € I;;[D;]? x Wi>picr D

(2) We call i = (i, : k < r) the indezx of an [-canonical tuple 5. 5 is index-
strictly-increasing if whenever k < k' < r, iy < iy and if iy, € w, then
b < T

(3) For any two ordinals a, o/, let 5, denote the tuple obtained by replacing
the occurrence of « in 5 by o’. Similarly for any two sequences of ordinals
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a, @’ of the same length, 55,5 denotes the tuple obtained by replacing the
occurence of o; in § by o for each i < |a|.

Notation 2.11. Many times in what follows, we confuse a tuple with the set that
consists of elements from the tuple, namely § = (s; : i < n) is identified with {s; :
i < n}. It can be mostly inferred from the context, for example W (5) = W({s; :
i<n})and W(sNt)=W({s;:i <n}n{t;:j <m}) where t = (t; : j <m).

Claim 2.12. In VI[G], for any j < r and for any finite B; C A; with o}, € B; for
i < r, there exists arbitrarily large o € A;\{ad,} such that « > B;\{ad,} and the
following is true: for anyl <, any l-canonical tuple 5 from (B; : © < r) containing
o, di(3') = di(5) where 8 =35 _;

a%a

Proof. Fixj < r. Work in V. For any given p € P and v € AJ\{oz'} we want
to find p’ < p and @ > max{y, max B;\{aZ,}} in 4;\{a?} such that p’ forces the
conclusion above is true for this .. This clearly sufﬁces by the density argument.
Given p € P, extending it if necessary, we may assume that for each [ < r and
each [-canonical tuple § from (B; : i < r), p | W(3) decides the value of dl(g). Find
a € A;\{ad} large enough such that
e a > max{max B;\{a/ },~v}
e dom(p) N (W(uU{a}) —W(u)) =0 for all u € [J,., B
This is possible since dom(p) is finite and for any fix u € [|J
{a}h) NW(uU{a'}) = W(u) for any o # o’ > maxu + 1.
Define p’ = pUUKT{hW ),w(s)(p [ W(5)) : 5 is an I-canonical tuple from (B; :
i < 7)ol €5 and § = =54 —o)- We claim that p’ is the desired condition. To
verify this, it suffices to show the following:

]<2r71'

B|< 1, W(u U

i<r

(1) p'isacondition. We do this by showing for p is compatible with Ay sy w (s (P

W (s)) andihw(g)yw(g/)(p [ W(5)) is compatible with hyy ) w i) (p [ W(t))
for each §,t as above.

e Fix 5. To see p is compatible with p* =g4.; hw ) we) (e [ W(s)),
notice that dom(p) N dom(p*) C dom(p) N W(3') C W(5 — {a}) by
the choice of a. By hw ) wy | W(s —{al}) is the identity
function on W (5 — {a?,}) since (5,5 — {ad }, <) ~ (5,5 — {a}, <) and
5—{al} =5 —{a}. Hence p* [ W(F —{a}) =p | W(E—{al}) =

W(s — {a}).

e Fix 5,1 asabove. Let o =def hw (s),w ) (0 | W(5)), a1 =der hw @), w(
W (t)). Notice that dom(qo)ﬁdom(ql) W(E)NW () =W (s Nt)
W((5Nt) 3 _,,)- Observe that (5,5N¢, <) ~ (5, 5'N¢’, <) and (¢, 5N¢,
) =~ (t',5'Nt’, <). By|CL.4} we have hy ) w ) (W (5Nt)) = W(s'N
and hyy ) w (e (W(sNt)) = W(s' Nt'). Hence qo [ W((5N1) 5 _,,) =
hw s we) (@ T WEND) = hwennweam® | W(END) and g1 |
W((S n i) ;_)a) = hW(E) W (t") ( ) W(Eﬂ i)) = hW(gmﬂ,W(g'mf')(P |

(sNt)). Since go and ¢q; agree on their common domain, it follows

that they are compatible.
(2) p’ forces dy(5) = dy(5') for any I-canonical tuple 5 from (B; : i < ) contain-
ing o/, where §' = Sai o forany I <r. Fix [ and s. By the initial assump-

<
?)

tion about p, we know there exists n < r such that p | W(3) I dy(5) = n
By hws)wey@ | W(3)) Ik di(5") = n. Hence p’ I- di(5') = n =
dy(3).

I

n(p !
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Claim 2.13. There ezist C* C A; containing o, for i < r such that
(1) for each i <1, type(C?) = w + 1
(2) for each | < r and each index-strictly-increasing l-canonical tuple

= 0 0o .. -1 -1 l +1 . r—1

s = (ai07ai67 70%'17170‘@‘271;0%”@1“1, aair,l)
from (C* i <), di(3) = di(5'), where

= 0 0 -1 -1 l +1 r—1

S _(O‘i(ﬂaw?""ail_lvo‘w y Ay Ay 570 )

In particular, the color s gets under d; only depends on its indez.

Proof. We will build these sets in w-steps. We will pick one point at a time from
sets listed in the following order:

AOaAla"' 7Ar—1aA07A17"' aAr—laA07Ala"' 7Ar—1a"' .

In particular, we will find J* = {ji : k € w} C w such that C* = {aéi ke

whU{al} for each i < r. For fixed 4, k, let C}, denote {a;.i (k< kiu{al}.
. . K’

Recall Cf = {a,} for all i < r. Recursively, suppose for some i < r and k € w
we have defined C¥ for all (g,p) <ic. (k,7) (i.e. either ¢ < k or ¢ =k and p < i).
Apply Claim to pick ji € w such that

o ji > gk for all (q,p) <iex (k,1) .

e for any [ < r and any [-canonical tuple 5§ containing ¢, from <C’,fp p <)
where k, = kif p < i and k, = k—11if p > ¢, it is true that d;(3) =
dl(gafdﬁozi_i )

Tk

We now verify that (C* : i < r) satisfies (2). Fix [ < r and some index-strictly-

increasing I-canonical tuple 5 from (C*: i < r), say

S 0 o . -1 -1 l +1 . r—1
§= (aio’ ai()’ 7ai171’ai271’ail’ Qg1 ’air—l)'

By the hypothesis, we know max{i,, : m < r,4,, <w} < i} for any k < [. By the
conclusion of Claim and the index management in our recursive process, we
know that

N 0 0 -1 _1-1 1 I+1 r—1
di(8) = di, gy ooy oy g, o).

O

By Claim we may without loss of generality assume that the sets (A4; : i < r)
already satisfy that: for each [ < r, for each index-strictly-increasing Il-canonical
tuple § from (A; : i < r) satisfies (2) in the conclusion of Claim [2.13]

To finish the proof, we basically need similar arguments as in Claim 2.9 and Step
5 from [§]. We supply a proof for completeness.

Claim 2.14. There exist (B; C A; : i < r,al, € B;,type(B;) = w + 1) and
(< r 1 < r) such that for each I < r, for each index-strictly-increasing -
canonical tuple 3 from (B; :i <), di(3) = p;.

Proof. Fix I < r,W € [w]®. Define g : [W]! — r such that for each i = {ig < i; <
< Z'lfl};

= 0 0 -1 -1 l +1 r—1
g(l)*dl(aio’awv"'7O‘il,lvaw » My Ay 570 Ay )
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Let I € [W]¥ be a monochromatic subset with color p; for g. For any index-
strictly-increasing [-canonical tuple

= 0 0 -1 -1 l +1 r—1
5= (ajo’ajg’ ’Oéjlfﬁajl’fl’ajl’ajul’ ’Oéjr71>

such that ji,j; € I U{w} for any k < r and ¢t < I, by Claim and the remark
that follows, we know that

di(5) = di(af, 0l ool al, ol el = g({do < - < Giead) = e

To get the conclusion of the claim, apply the procedure above repeatedly to get
wDIhyDI DD 11 DI Ttis clear that B; = {a} : j € I} U{al,} fori <r
will be the desired sets.

O

By Claim we may without loss of generality assume that the sets (A; : ¢ < )
already satisfy that: there exist (p; : I < r) such that for each | < r, for each index-
strictly-increasing l-canonical tuple § from (A; : ¢ < 1), d;(5) = p;. By the Pigeon
hole principle, there exist I’ < I such that py = p; = p.

Claim 2.15. There exists an infinite X such that f [ X + X = p.

Proof. For i < w, let

~ _ (.0 0 1 1 -1 I'—1
a; = (OZO,Oéw,Oél,Oéw,"' y Q1,0

4 '+1 -1
QUi (1=17) Qg 14i-(1—=1) " X1 4i(1—-17)
l r—1
Ayt Oy, )a

namely, we take
(1) {ak, ok} from Ay for each k < I/
(2) {a£+i(l_l,)} from Ay for each k > 1’ and k < [
(3) {aF} from Ay for each k > [.
1
Define z; = 581, * a;. For i < j € w, consider
Bi,j = (aga aga e 7045:}) agila

ol ol N ol—1
Vi-(1=1)s SV 45-(1=17)» 1—144-(1=1") T l—=145-(1-V)’

Lo ;—1%

namely, we take
(1) {a¥, ok} from Ay for each k < I/
(2) {O‘Z+i(l4')’ a’gﬂ.(lil,)} from Ay, for each k > 1" and k <
(3) {aF} from Ay for each k > [.

It is not hard to notice that z; +x; = 51 * Ifym-.

For any i < j € w, a; (b;; respectively) is easily seen to be an index-strictly-
increasing !’-canonical (I-canonical) tuple. Therefore, f(2x;) = f(sy*a;) = dyp(a;) =
pr = pand f(x; + ;) = f(s Bm-) = dl(l_Ji,j) = p = p. We conclude that
X ={=; :i € w} is the set as desired.

(Il

Claim finishes the proof of (T]).
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Proof of part (3). We prove a stronger statement: Dico, N =1 (Rg)a. To see this,
for any such f, let d;(a) = f(s;*a) be defined as before for ¢ < 3. In particular, the
domain of d; is [w;]"™2 for i < 3. Apply the Dushnik-Miller theorem (see Theorem
11.3 in [2]) to get A = {a; : j <w} € [wi]“ T such that d; | [A]""2 = p; < 2 for all
i < 3. By the Pigeon hole principle we have the following cases and we will define
X = {z; : i € w} for each case.

1

(1) po = p1 = p. Let a; = 350 * (i, ). Then f(2z;) = f(so * (4, 0)) =
do(asn ) = po = p. Forany i < J € w, J(as +2,) = [(s1 % (0 0,) =
di(o, aj,0,) = p1 = Pi

(2) pPo = P2 = P. Let Ty = 550*(0&21'70121‘4_1). Then f(QI’Z) = f(So*(agi,a21'+1)) =
do(i, a2i11) = po = p. For any i < j € w, f(x; + ) f(s2 *
(Q2i, Qi41, 2, gj41)) = do(2i, iq1, 25, Q2j41) = p2 = p.

(3) p2 = pr = p. Let z; = 550 * (a0, 01, @iy2). Then f(2z;) = f(so *
(@0, 1, @it2)) = do(ap, a1, it2) = po = p. Forany i < j € w, f(zi+x;) =
f(s2% (o, a1, iy2, ajy2)) = da(ao, 1, Qita, o) = p2 = p.

O

Clearly the proof above does not generalize to the case when r = 3 since 2¥ 4
(w+2)3. A more fundamental restriction is that by a result of Hindman, Leader
and Strauss [5], there exists some r € w such that @, N A% (Rg),.
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