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Abstract. Rado’s Conjecture is a compactness/reflection principle that says

any nonspecial tree of height ω1 has a nonspecial subtree of size ℵ1. Though
incompatible with Martin’s Axiom, Rado’s Conjecture turns out to have many

interesting consequences that are also implied by certain forcing axioms. In

this paper, we obtain consistency results concerning Rado’s Conjecture and
its Baire version. In particular, we show that a fragment of PFA, which is the

forcing axiom for Baire Indestructibly Proper forcings, is compatible with the

Baire Rado’s Conjecture. As a corollary, the Baire Rado’s Conjecture does not
imply Rado’s Conjecture. Then we discuss the strength and limitations of the

Baire Rado’s Conjecture regarding its interaction with stationary reflection

principles and some families of weak square principles. Finally we investigate
the influence of Rado’s Conjecture on some polarized partition relations.
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1. Introduction

Definition 1.1. A partial order (T,<T ) is a tree if for each t ∈ T , {s ∈ T : s <T t}
is well ordered under the tree order <T .

When it is clear from the context, we will use T to refer to (T,<T ) and < to
refer to <T .

Definition 1.2. For a given tree T , for each t ∈ T , the height of t in T is the order
type of its predecessors under the tree order, denoted as htT (t). The height of the
tree T is the least ordinal α such that for all t ∈ T , htT (t) < α.

Remark 1.3. A tree T
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(1) is non-trivial if each t ∈ T has two incompatible extensions;
(2) does not split on the limit levels if for each limit α and s, s′ ∈ T such that

htT (s) = htT (s′) = α, if {t ∈ T : t < s} = {t ∈ T : t < s′}, then s = s′.

Restricting ourselves to trees that are non-trivial and do not split on the limit levels
does not affect any application of Rado’s Conjecture.

The trees we deal with for the rest of the paper are non-trivial, are of height ω1,
have a unique minimal element and do not split on the limit levels, unless otherwise
stated. The unique minimal element (or the root) of a tree T will be denoted as
rootT .

Todorčević studied Rado’s Conjecture, established some of its equivalent forms,
and showed its consistency by collapsing a supercompact cardinal to ω2 in [32]. We
will state Rado’s Conjecture in terms of its tree formulation in this paper.

Definition 1.4. A tree T is special if there exists g : T → ω such that g is injective
on chains.

Definition 1.5. Rado’s Conjecture (RC) abbreviates the following: any nonspecial
tree has a nonspecial subtree of size ℵ1.

Rado’s Conjecture has interesting consequences. To sample a few:

Theorem 1.1 (Todorčević [34], [32]). Rado’s Conjecture implies:

(1) θω = θ for all regular θ ≥ ω2,
(2) the Singular Cardinal Hypothesis,
(3) �(κ) fails for all regular κ ≥ ω2,
(4) the Strong Chang’s Conjecture,
(5) for any regular cardinal λ ≥ ω2, any stationary subset of λ∩cof(ω) reflects.

Theorem 1.2 (Feng [9]). Rado’s Conjecture implies the non-stationary ideal on
ω1 is presaturated.

Theorem 1.3 (Doebler [7]). Rado’s Conjecture implies that all stationary set pre-
serving forcings are semiproper.

Theorem 1.4 (Torres-Pérez and Wu [36]). Rado’s Conjecture along with ¬CH
implies ω2 has the strong tree property. Rado’s Conjecture implies the failure of
�(λ, ω) for all regular λ ≥ ω2.

As remarked in [32] at the end of Section 3, many known consequences of Rado’s
Conjecture follow from a weaker principle, the Baire version of Rado’s Conjecture.

Let T be a given tree. We can view T as a forcing poset such that t′ is a stronger
condition than t iff t <T t′. Therefore, we can talk about subsets of T that are
open or dense in the context of a forcing poset.

Definition 1.6. A non-trivial forcing poset P is ω-distributive if forcing with P
does not add new ω-sequences of ordinals.

Notice that if P is separative, then P is ω-distributive if and only if for any
countable collection of open dense sets {Un ⊂ P : n ∈ ω},

⋂
n Un is dense.

Definition 1.7. A tree is Baire if it is ω-distributive as a forcing notion.

Remark 1.8. It is not always the case that a tree is separative. However, we do
have that for any tree T , the following are equivalent:
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(1) forcing with T adds no new countable sequences of ordinals;
(2) forcing with T adds no new functions from ω to V ;
(3) for any countable collection of dense open subsets {Un : n ∈ ω} of T ,

⋂
n Un

is dense in T .

The implications (1) ↔ (2), (3) → (1) are standard (see for example the section
on Distributivity in Chapter 15 of [18], page 228 or Lemma IV.6.9 and Excercise
IV.6.10 in Kunen [19]). To see (2) → (3), assume {Un : n ∈ ω} is a collection of
dense open sets. Our goal is to show

⋂
n∈ω Un is dense. Let t ∈ T be fixed and

G ⊂ T be generic over V that contains t. In V [G], define f : ω → G ⊂ V recursively
as follows: f(0) = t. Given f(i), find t′ ≥ f(i) in Ui ∩G such that there exists two
incompatible immediate extensions of t′ in T . To see that this is possible, since
f(i) ∈ G and Ui is dense above f(i), there is t∗ ∈ Ui ∩ G with t∗ ≥ f(i). By the
non-triviality of T , there are s, s′ ≥ t∗ that are incompatible. Let t′ ≥ t∗ be such
that it has two incompatible immediate extensions and no s with t∗ ≤ s < t′ has
this property. The existence of such t′ follows from the fact that T does not split
on the limit levels. Note by the openness of Ui, t

′ ∈ Ui. Define f(i+ 1) = t′. Let ḟ
be a T -name for the function f as defined. By the hypothesis, we can find t0 ≥ t
and g : ω → T such that t0 
 ḟ = g. In particular, we have g(i + 1) ∈ Ui for all

i ∈ ω. If the range of g is finite, we are done. Otherwise, since t0 
 “g(i) ∈ Ġ for
all i ∈ ω”, it must be the case that t0 ≥ g(i) for all i ∈ ω. To see this, suppose for
the sake of contradiction that there is i > 0 such that t0 < g(i). Fix some j > i
such that g(j) > g(i). As g(i) has two incompatible immediate successors, we can
extend t0 to a condition that is incompatible with g(j), contradicting with the fact

that t0 
 g(j) ∈ Ġ.

Notice that any Baire tree is nonspecial. To see this, given a function g : T → ω,
Un = {t ∈ T : ∃t′ <T t g(t′) = n ∨ ∀t′′ ≥T t g(t′′) 6= n} is a dense open subset of T
for all n ∈ ω. If g is a specializing map, then

⋂
n Un = ∅, witnessing that T is not

Baire. Hence the following is a statement weaker than RC.

Definition 1.9. RCB abbreviates the following: any Baire tree has a nonspecial
subtree of size ℵ1.

We can also formulate a slightly stronger principle:

Definition 1.10. sRCB abbreviates the following: any Baire tree has a Baire
subtree of size ℵ1.

Definition 1.11. A poset P is Baire Indestructibly Proper (BIP) if P is proper
and for any Baire tree T , 
T P̌ is proper.

Lemma 1.12 (Todorčević [31]). MAℵ1 is incompatible with RCB.

Proof. Let S ⊂ ω1 be stationary co-stationary. Consider the tree T (S) defined by
the following: t ∈ T (S) iff t is a closed bounded subset of S. The order in T (S)
is end extension. T (S) is the standard poset for adding a club subset contained in
S. By Theorem 23.8 in [18], T (S) is Baire. To see that MA is incompatible with

RCB , simply note that by a theorem of Baumgartner, Malitz and Reinhard [3],

MAℵ1 implies any ℵ1-size subtree of T (S) is special while RCB implies there exists
a nonspecial subtree of T (S) of size ℵ1. �

One of the motivations of our work is to understand what fragments of the
standard forcing axioms are compatible with RCB . A natural guess is that it
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should include the “non-specializing” fragment. Our main result, Theorem 1.5,
shows that it could even include some “harmless” specializing forcings.

The main result of this paper is:

Theorem 1.5. Assume the existence of a supercompact cardinal. There exists a
forcing extension where sRCB and MAω1

(BIP) both hold.

Since MAω1
(BIP) implies the failure of RC (see Lemma 4.20), we have

Corollary 1.13. sRCB in general does not imply RC.

We are also interested in the influence of Rado’s Conjecture on singular cardinal
combinatorics, stationary reflection principles and polarized partition relations.

Definition 1.14. For ordinals α, β, let {α}β denote {A ⊂ α : otp(A) = β}.

Definition 1.15.

(
α
β

)
→
(
γ
δ

)1,1

σ

abbreviates: for any f : α× β → σ, there exists

A ∈ {α}γ and B ∈ {β}δ, such that f � A×B is constant.

Definition 1.16. Fix a cardinal κ and a set X. PκX is defined to be {x ⊂ X : |x| <
κ}. A subset C ⊂ PκX is a closed unbounded (or club) subset of PκX if there exists a
function f : PωX → PκX such that C ⊃ Clf =def {x ∈ PκX : ∀z ∈ Pωx f(z) ⊂ x}.
A subset S ⊂ PκX is stationary if for any club subset C ⊂ PκX, S ∩ C 6= ∅.

For more information on generalized stationarity, see Chapter 8 of [18] or Lemma
0 of [11].

Definition 1.17 ([11]). For any regular λ ≥ ω2, the Weak Reflection Principle at
λ, or WRP(λ), refers to the following principle: for any stationary S ⊂ Pω1

λ, there
exists W ⊂ λ such that |W | = ℵ1, ω1 ⊂ W and S ∩ Pω1

W is stationary in Pω1
W .

We use WRP to denote the following global principle: for any regular λ ≥ ω2,
WRP(λ).

The paper is organized as follows:

• In Section 2, we sketch the proof that RC holds in the classical Mitchell
model for the tree property. This model witnesses that RC+¬CH does not
imply ω2 has the super tree property.
• In Section 3, we present a model via a mixed-support iteration where sRCB

holds but RC fails.
• In Section 4, we prove Theorem 1.5.
• In Section 5, we present some streamlined proofs of known consequences

of RCB and show that RCB in general is compatible with failures of cer-
tain simultaneous stationary reflection principles and some versions of weak
square principles.

• In Section 6, we show

(
ω2

ω1

)
→
(
ω
ω

)1,1

ω

and

(
ω2

ω1

)
→
(
k
ω1

)1,1

ω

for any k ∈ ω

hold under a weak consequence of RC, while it is consistent that RC holds

but

(
ω2

ω1

)
→
(
ω
ω1

)1,1

ω

fails.

We end the introduction by including a simple lemma characterizing forcings that
preserve ω-distributivity, which is a variant of the well-known Easton’s Lemma in
the context of forcing with products.
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Definition 1.18. A poset P is countably capturing if for any p ∈ P and any P-name
τ̇ of a countable sequence of ordinals, there exists a P-name σ̇ such that |σ̇| ≤ ℵ0,
and there is q ≤ p such that q 
P τ̇ = σ̇.

Remark 1.19. Here we think of each given P-name τ̇ as represented by a function fτ̇
whose domain is ω such that for each n ∈ ω, fτ̇ (n) = {(αp, p) : p ∈ An} where An
is some maximal antichain chain of P such that for each p ∈ An, p 
P τ̇(n) = αp.
By saying |σ̇| ≤ ℵ0, we really mean there exist antichains Bn ∈ [P]≤ℵ0 for n ∈ ω
such that σ̇ is represented by the function n ∈ ω 7→ {(αp, p) : p ∈ Bn}. More
explicitly, we mean that for any generic G ⊂ P over V , (σ̇)G is a partial function
on ω such that for each n ∈ ω, if there exists p ∈ G∩Bn (necessarily unique), then
(σ̇)G(n) = αp; otherwise (σ̇)G(n) is undefined.

We may assume all the names for a countable sequence of ordinals in the following
are represented as described in Remark 1.19.

Remark 1.20. Any proper forcing is countably capturing. To see this, let p ∈ P and
a P-name for a countable sequence of ordinals τ̇ be given. Let λ be a sufficiently
large regular cardinal and let M ≺ H(λ) be countable and contain P, p, τ̇ . By
properness, we can find q ≤ p that is (M,P)-generic. Let σ̇ = τ̇ ∩M . Then |σ̇| ≤ ℵ0
and q 
P σ̇ = τ̇ .

Lemma 1.21. Let P be countably capturing and Q be ω-distributive. Then TFAE:

(1) 
P Q̌ is ω-distributive
(2) 
Q P̌ is countably capturing.

Proof. • 2) implies 1): Let G×H be generic for P×Q and let τ̇ be a (P×Q)-
name of a countable sequence of ordinals. We need to show (τ̇)G×H is
in V [G]. Since 
Q P is countably capturing, in V [H] there exists a P-
name σ̇ with |σ̇| ≤ ℵ0 such that in V [H][G], (τ̇)H×G = (σ̇)G. Since Q is
ω-distributive, σ̇ ∈ V . But then (τ̇)H×G = (σ̇)G ∈ V [G].

• 1) implies 2): Let H be Q-generic, we need to show P is countably capturing
in V [H]. Let τ̇ be a (Q × P)-name for a countable sequence of ordinals.
We can canonically identify (τ̇)H as a P-name for a countable sequence of
ordinals in V [H]. Let p ∈ P be given. Let G ⊂ P containing p be generic
over V [H]. In V [H ×G], by the assumption and the Product Lemma (see
for example Theorem V.1.2 in [19], page 315), we know (τ̇)H×G ∈ V [G].
Hence there exists a P-name σ̇ ∈ V such that (σ̇)G = (τ̇)H×G in V [G×H].
Find q ∈ G, q ≤P p that forces σ̇ = (τ̇)H in V [H]. In V [H], q 
P “σ̇ is
a countable sequence of ordinals”. As “q 
P σ̇ is a countable sequence
of ordinals” is a ∆0-statement, it also holds in V . By the fact that P is
countably capturing in V , we can find q′ ≤P q and a P-name ϕ̇ such that
|ϕ̇| ≤ ℵ0 and q′ 
P ϕ̇ = σ̇. Again since “q′ 
P ϕ̇ = σ̇” is a ∆0-statement,
it also holds in V [H]. Finally in V [H], we have found q′ ≤P p such that
q′ 
P ϕ̇ = σ̇ = (τ̇)H and |ϕ̇| ≤ ℵ0.

�

We record the Pressing Down Lemma for trees due to Todorčević for later use.

Theorem 1.6 (Todorčević, [31]). Fix a nonspecial tree T and a regressive function
f : T → T , namely for all t ∈ T\{rootT }, we have f(t) <T t. Then there exists a
nonspecial subtree T ′ ⊂ T and s ∈ T such that f takes constant value s on T ′.
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2. RC + ¬CH does not imply the super tree property at ω2

Fix cardinals κ ≤ λ. Recall the following definitions (see [38] for instance).

Definition 2.1. 〈da : a ∈ Pκλ〉 is a Pκλ-list if da ⊂ a for all a ∈ Pκλ.

Definition 2.2. A Pκλ-list 〈da : a ∈ Pκλ〉 is thin if there exists a club C ⊂ Pκλ
such that |{da ∩ c : c ⊂ a ∈ Pκλ}| < κ for every c ∈ C.

Definition 2.3. Given Pκλ-list D = 〈da : a ∈ Pκλ〉 and d ⊂ λ, we say d is an
ineffable branch of D if there exists a stationary subset S ⊂ Pκλ such that d∩a = da
for all a ∈ S.

Definition 2.4. Let ITP(κ, λ) abbreviate: for any thin Pκλ-list D, there exists an
ineffable branch of D.

Definition 2.5. We say κ has the super tree property if for any λ ≥ κ, ITP(κ, λ)
holds.

Magidor proved in [21] that κ is supercompact iff κ is inaccessible and has the
super tree property.

We show in this section using a model due to Mitchell [24] that RC +¬CH does
not imply the super tree tree property at ω2, answering a question of Torres-Pérez
and Wu [36]. We heavily rely on Viale and Weiß’s analysis in [38].

2.1. Proof that RC holds in the Mitchell’s model. We give a proof that
RC holds in Mitchell’s classical model of the tree property [24]. This is due to
Todorčević, who in [34] pointed out the model works. In particular, this shows that
RC is compatible with 2ω = ω2. For completeness, we supply a proof here.

Let κ be a strongly compact cardinal. Let Mκ denote the Mitchell forcing,
which consists of pairs (p, f) where p ∈ Add(ω, κ) and f is a countably supported
function on κ such that for each α ∈ κ, f(α) is an Add(ω, α)-name for an element

in Add(ω1, 1)V
Add(ω,α)

. The order ≤ in Mκ is defined as (q, g) ≤ (p, f) iff q ⊃ p and
for each α ∈ supp(f), q � α 
Add(ω,α) g(α) ≤Add(ω1,1) f(α).

Let R be the term poset. More precisely, conditions in R are countably supported
functions f with domain κ such that for each α ∈ supp(f), f(α) is an Add(ω, α)-

name for an element in Add(ω1, 1)V
Add(ω,α)

. For f, g ∈ R, f ≤R g iff supp(f) ⊃
supp(g) and for each α ∈ supp(g), 
Add(ω,α) f(α) ≤ g(α). Observe that R is
countably closed.

We list a few well-known properties of the Mitchell poset, whose proofs can be
found in [24]:

(1) Mκ is κ-c.c;
(2) Mκ is a projection of Add(ω, κ) × R which is proper, so in particular Mκ

is proper;
(3) for each inaccessible δ < κ, we can truncate Mκ at δ to get Mδ. For any

G ⊂Mδ generic over V , in V [G], Mκ/G is forcing equivalent to a projection
of Add(ω, κ)×R∗, where R∗ is a countably closed poset.

We need the following two general facts regarding non-specializing forcings.

Claim 2.6 ([32], Lemma 12). No countably closed forcing can specialize a nonspe-
cial tree.

Claim 2.7. No Cohen forcing can specialize a nonspecial tree.



RADO’S CONJECTURE AND ITS BAIRE VERSION 7

Proof. Let T be a given nonspecial tree. Let λ be a cardinal and Add(ω, λ) be
the Cohen forcing for adding λ reals. Suppose for the sake of contradiction that
there exists a name for a specializing function ġ : T → ω. For each t ∈ T , find
pt ∈ Add(ω, λ) such that pt 
 ġ(t) = nt for some nt ∈ ω. Let W =def

⋃
{dom(pt) :

t ∈ T} and since |W | ≤ |T |, there exists an injection l : W → T . For each
t ∈ T , pt is naturally identified with p′t such that dom(p′t) = l[dom(pt)] and for
each s ∈ dom(p′t), p

′
t(s) = pt(l

−1(s)). It is immediate that whenever s, s′ ∈ T are
such that p′s ∪ p′s′ is a function, ps ∪ ps′ is also a function. Hence, without loss of
generality, we may assume pt is a finite partial function from T to 2.

Let Ft = dom(pt) for all t ∈ T . Since T is not special, by going to a nonspecial
subtree if necessary, we can assume there exists m ∈ ω and n ∈ ω such that nt = m
and |Ft| = n for all t ∈ T . Fix some well-ordering C on T .

We shrink the trees in n rounds. Let T0 = T . At stage i+ 1, define a regressive
function on Ti such that t ∈ Ti is mapped to

(1) its immediate predecessor if it has one,
(2) otherwise, the <T -least strictly smaller node s such that the i-th element

(in the given order C) of Ft is in Fs if such s exists,
(3) otherwise, the root.

Apply Theorem 1.6 and let Ti+1 be a non-special subtree on which the function
is a constant, say si+1. Then we have the following property: for t < t′ ∈ Ti+1, if
the i-th element in Ft′ is in Ft, then it is already in Fsi+1 . Let T ′ = Tn. For any
t′ ∈ T ′, we know that all elements in Ft′ that are also in Fs for some s < t′ with
s ∈ T ′ are already in D =def

⋃
i<n Fsi . Thus Ft ∩ Ft′ ⊂ Ft′ ∩D for every t, t′ ∈ T

with t < t′. As 2[D]<ω is finite, we can further find a nonspecial subtree T ∗ ⊂ T ′,
r ∈ [D]<ω and h : r → 2 such that for all t ∈ T ∗, Ft ∩D = r and pt � r = h. This
implies that for any t < t′ ∈ T ∗, pt and pt′ are compatible. This contradicts the
fact that 
 ġ : T → ω is a specializing function.

�

Proof that RC holds in V Mκ . Let G ⊂ Mκ be generic over V and let T ∈ V [G] be
a nonspecial tree of size θ. In V [G], we have that κ = ω2. We may assume T
is of the form (θ,<T ). Let λ > θ be a sufficiently large regular cardinal and fix
j : V → M witnessing κ is λ-strongly compact. More precisely, the embedding j
satisfies that crit(j) = κ, κM ⊂M and for any X ⊂M such that |X| ≤ λ there is
Y ∈ M with X ⊂ Y and M |= |Y | < j(κ). By the κ-c.c-ness of Mκ, j � Mκ = id
is a complete embedding of Mκ into j(Mκ). Moreover, it is not hard to see that
j(Mκ) � κ = Mκ. Fix some Y ∈ M such that M |= |Y | < j(κ) and j′′θ ⊂ Y . Let
K be generic over V [G] for j(Mκ)/G. We can lift j to an elementary embedding
j+ : V [G]→M [G∗K]. In M [G∗K], we know that (Y ∩ j+(θ), <j+(T )) is a subtree

of j+(T ) of size < j(κ). In V [G ∗K], we can see that (Y ∩ j+(θ), <j+(T )) contains

(j′′θ,<j+(T )). We will be done if we manage to show that (Y ∩ j+(θ), <j+(T ))

is a nonspecial subtree of j+(T ) (in V [G ∗ K] hence also in M [G ∗ K] by the
downward absoluteness) as we can then finish by applying the elementarity of j+.
Since (j′′θ,<j+(T )) ' (T,<T ) in V [G ∗K], it is sufficient to show (T,<T ) remains
nonspecial after forcing with j(Mκ)/G over V [G].

By the properties listed before Claim 2.6, we know j(Mκ)/G is a projection of
(Add(ω, j(κ)) × R∗)M [G] where R∗ ∈ M [G] is a countably closed poset in M [G].
But R∗ is also countably closed in V [G], since V |= Mκ ⊂ M and Mκ is κ-c.c,
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which implies that V [G] |= M [G]κ ⊂M [G] (see for example Proposition 8.4 in [5]).
To summarize, in V [G], j(Mκ)/G is a projection of Add(ω, j(κ)) × R∗ where R∗

is countably closed in V [G]. Apply Claim 2.6 and then Claim 2.7, we know that
(T,<T ) remains nonspecial in V [G ∗K]. �

2.2. Putting it together.

Definition 2.8. A forcing poset P such that 
P “κ is regular” has

(1) the κ-covering property if for any generic G ⊂ P and any set of ordinals
A ∈ V [G] such that V [G] |= |A| < κ, there exists B ∈ V such that V |=
|B| < κ and V [G] |= A ⊂ B;

(2) the κ-approximation property if for any generic G ⊂ P and any set of
ordinals A ∈ V [G], if A ∩ a ∈ V for all a ∈ V with V |= |a| < κ, then
A ∈ V .

Remark 2.9. For any poset P and regular κ, if P is κ-c.c, then P has the κ-covering
property.

We will need the following lemmas.

Lemma 2.10 ([37], Lemma 2.4). For κ regular, if a poset P satisfies that P × P
has κ-c.c, then P has κ-approximation property.

Lemma 2.11 ([24], Lemma 3.3). Mκ is κ-Knaster.

In fact, Lemma 3.3 of [24] shows Mκ is κ-c.c. But essentially the same proof gives
that Mκ is κ-Knaster. The key modification is that the κ-Knasterness of Add(ω, κ)
will be used in the proof instead of just the κ-c.c-ness of Add(ω, κ). Alternatively,
the proof can also be adapted from the proof of Claim 3.6 in Section 3 with the
aforementioned modification in mind.

In particular, by Lemma 2.10 and Lemma 2.11, Mκ satisfies the κ-approximation
property and the κ-covering property.

We use the following result due to Viale and Weiss [38].

Theorem 2.1 ([38]). Let κ be an inaccessible cardinal and P be a proper poset with
the κ-covering and κ-approximation properties. If in V P, the super tree property
holds at κ, then the super tree property must already hold in V at κ. In particular,
κ must be supercompact in V .

Theorem 2.2. Let κ be a strongly compact cardinal that is not supercompact. Then
there exists a forcing extension in which RC and 2ω = κ = ω2 hold but the super
tree property at ω2 fails.

Proof. Force with Mκ and letG ⊂Mκ be generic over V . In V [G], RC+2ω = κ = ω2

hold by the discussion in Subsection 2.1 but the super tree property at κ = (ω2)V
Mκ

fails by Theorem 2.1 and Lemma 2.11.
�

To end this section, we discuss how the Mitchell extension can serve as a simple
model to separate RC from the stationary reflection principle WRP (recall Defini-
tion 1.17). More precisely, we show that WRP fails in the model constructed in
Theorem 2.2. To see this, let G ⊂Mκ be generic over V . First notice:

Claim 2.12. V [G] |= MAω1
(Cohen).
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Proof of the Claim. Since κ is measurable in V , we can fix an elementary embed-
ding j : V →M definable in V such that crit(j) = κ and κM ⊂M . In V [G], fix a
collection of dense open subsets of Add(ω, 1), say D̄ = {Dα ⊂ Add(ω, 1) : α < ω1}.

Since κM ⊂ M , we know that Mκ ∈ M . It is not hard to see that in M ,
Mκ embeds completely into j(Mκ) (see Section 23 in [5] for more details). Let
H ⊂ j(Mκ)/G be generic over V [G]. By a theorem of Silver (see Proposition 9.1 in
[5] for a proof), j lifts to j+ : V [G]→M [G∗H]. Since Mκ is κ-c.c by Theorem 2.11
and V |= κM ⊂M , we know by Proposition 8.4 in [5] that V [G] |= κM [G] ⊂M [G].
Therefore, D̄ ∈ M [G]. Since j(Mκ)/G projects onto Add(ω, 1) in M [G], we know
there exists a filter h ⊂ Add(ω, 1) in M [G ∗ H] that is generic over M [G]. As a

result, h meets D̄ in M [G ∗H]. Since j+(D̄) = j+
′′
D̄ = D̄, by the elementarity of

j+, we know V [G] |= “there exists a filter h ⊂ Add(ω, 1) that meets D̄”. Thus, we
have shown that V [G] |= “MAω1

(Cohen)”. �

Suppose for the sake of contradiction that WRP holds in V [G]. By Theorem 3.1
in [28] and Claim 2.12, we have that ω2 has the super tree property in V [G]. This
contradicts Theorem 2.2.

Remark 2.13. Sakai ([27], Section 5) established the consistency of SSR+¬WRP(ω3)
relative to the consistency of a supercompact cardinal. In fact, in his model,
RC +¬WRP(ω3) holds. The forcing poset used there is different from the Mitchell
poset we use here and the analysis of various intermediate forcing extensions is
quite delicate. The consistency of the existence of a strongly compact cardinal that
is not supercompact is due to Menas [23]. There are also ways of getting extreme
examples, for instance it is possible for a strongly compact cardinal to be the least
measurable cardinal (see [22] or Proposition 22.6 in [5]).

3. Separating sRCB from RC

In this section we show sRCB does not imply RC in general. Recall that we
mentioned this result in the introduction as a corollary of Theorem 1.5, which will
be proved in Section 4. However, since the model presented in this section has a
certain “minimal” flavor and is different from the model constructed in Section 4,
we believe it is of independent interest.

We start off introducing a tree that will be central in the proof.

Definition 3.1. Let σ(R) denote the tree consisting of bounded subsets of R well
ordered by the natural order on R. The order in σ(R) is end extension.

We list a few observations about σ(R).

Observation 3.2. (1) σ(R) is nonspecial (Todorčević [32], Example 7);
(2) σ(R) is not Baire (for each n ∈ ω, Un =def {t ∈ σ(R) : ∃α ∈ t α > n} is a

dense open subset of σ(R) but
⋂
n∈ω Un = ∅);

(3) For any subset U ⊂ σ(R), in any outer model, U has no uncountable
branches.

Given a tree T , let S(T ) denote the specializing poset of T . More precisely,
it contains finite functions s : T → ω that are injective on chains. The poset is
ordered by the reverse inclusion. We need the following characterization due to
Baumgartner.

Theorem 3.1 ([4], [3]). S(T ) is c.c.c iff T does not contain an uncountable branch.
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Let κ be a supercompact cardinal. Let 〈Pα, Q̇β : α ≤ κ, β < κ〉 be the finite

support iteration of c.c.c forcings such that for each α, 
α Q̇α = S(σ(R)V
Pα

).
Observe that 
κ all subsets of σ(R) of size < κ are special. The reason is that: Pκ
is c.c.c and each < κ-subset of σ(R) in V Pκ appears in V Pα as a subset of σ(R)V

Pα

for some α < κ.

Lemma 3.3. For any Baire T , T 
 Pκ is ccc. Hence, by Remark 1.20 and Lemma
1.21, Pκ 
 T is Baire.

Proof. We induct on α ≤ κ. When α is a limit ordinal, let H ⊂ T be generic over
V . Then in V [H], Pα is the direct limit of 〈Pβ : β < α〉 and each Pβ is c.c.c by the
induction hypothesis. So by the usual argument via the ∆-System Lemma, we know
that Pα is also c.c.c in V [H]. When α = β+ 1, let H ×G ⊂ T ×Pβ be generic over

V . We examine Qβ = (Q̇β)G in V [H×G]. By induction hypothesis, 
T P̌β is c.c.c.
By Lemma 1.21, 
Pβ T is Baire. By our definition of the iteration, Qβ lives in V [G],

and is a specializing poset for (σ(R))V [G]. Note that (σ(R))V [G] = (σ(R))V [G×H]

since T is Baire in V [G] and (σ(R))V [G] does not have any uncountable branch in
V [G × H]. Therefore, Qβ is the same as the Baumgartner specializing poset for
σ(R) as defined in V [G×H]. By Theorem 3.1, Qβ is c.c.c. in V [G×H]. �

Remark 3.4. Lemma 3.3 remains valid if we replace the Baire tree T with any
ω-distributive forcing P.

We define our main forcing as a variant of Mitchell’s forcing for the tree property.

Definition 3.5. Q is a poset consisting of (p, f) where p ∈ Pκ and f is a countably
supported function on κ and for each α ∈ dom(f), f(α) is a Pα-name for a condition

in (Add(ω1, 1))V
Pα

. The order in Q is given by (p1, f1) ≤ (p2, f2) iff p1 ≤Pκ p2,
supp(f1) ⊃ supp(f2) and for each α ∈ supp(f2), p1 � α 
Pα f1(α) ≤ f2(α).

Claim 3.6. Q is κ-c.c.

Proof. Let 〈(pα, fα) : α < κ〉 ⊂ Q be given. Apply the ∆-System Lemma (see
Lemma III.6.15 in [19] for a proof) to get A ∈ [κ]κ such that {dom(fα) : α ∈ A}
forms a ∆-system with root h ∈ [κ]<ω1 and for all α, β ∈ A, fα � h = fβ � h. This
is possible since for any ω ≤ β < κ, the collection of nice Pβ-names for Add(ω1, 1)
is contained in V

(2|Pβ |)+
and h is countable.

Since Pκ is c.c.c, we may find α < β ∈ A such that pα and pβ are compatible.
Fix some r ≤ pα, pβ . Let fα + fβ be the function defined as follows:

fα + fβ(γ) =


fα(γ) γ ∈ h,
fα(γ) γ ∈ supp(fα)− h,
fβ(γ) γ ∈ supp(fβ)− h,
∅V Add(ω,γ)

otherwise.

It can be easily checked that (r, fα+fβ) is an element in Q extending both (pα, fα)
and (pβ , fβ). �

We will recall some standard analysis of this poset. Let R be the poset consisting
of functions f with domain κ of countable support such that for each α ∈ κ, f(α)

is a Pα-name for an element in Add(ω1, 1)V
Pα

and for any f, g ∈ R, f ≤R g iff
supp(f) ⊃ supp(g) and for each β ∈ supp(g), 
Pβ f(β) ≤ g(β). Notice R is
countably closed.
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Claim 3.7. Q projects onto Pκ.

Proof. The projection onto the first coordinate works. �

Claim 3.8. Pκ ×R projects onto Q.

Proof. Consider the identity map. To see that it is a projection map, for each
(p, f) ∈ Pκ × R, and (q, g) ≤Q (p, f), we need to find (p′, f ′) ∈ Pκ × R such that
(p′, f ′) ≤Pκ×R (p, f) and (p′, f ′) ≤Q (q, g). Let p′ = q. Let f ′ be a function
with support supp(g) and for each β ∈ supp(g), q � β 
Pβ f ′(β) = g(β) and

Pβ f ′(β) ≤ f(β). We can find such a function by the maximality principle of
forcing. �

Claim 3.9. For any countably closed D and any Baire tree T , D×T is ω-distributive.

Proof. It immediately follows from the fact that 
T D is countably closed, as T is
Baire. �

We need similar product analysis of the quotient forcing. Let δ < κ be inacces-
sible. We can truncate Q to Q � δ in the obvious way. Let Gδ be generic for Q � δ.
Let Hδ be the projection of Gδ to the first coordinate, which is V -generic for Pδ.

Claim 3.10. Let T ∈ V [Gδ] be a Baire tree. Then in V [Gδ], 
Q/Gδ T is a Baire
tree.

Proof. In V [Gδ], we will show that, similarly as in Claim 3.8, Q/Gδ is a projection
of (P[δ,κ))

V [Hδ] × R∗, where R∗ is some countably closed poset in V [Gδ]. Let E =

(P[δ,κ))
V [Hδ]. Let us give a more detailed description of what R∗ is and what the

projection is. The elements in R∗ are countably supported functions f with domain
[δ, κ) such that for each β ∈ dom(f), f(β) ∈ V [Hδ] is a (P[δ,β))

V [Hδ]-name for an
element in Add(ω1, 1). In V [Gδ], f ≤R∗ g if supp(f) ⊃ supp(g) and for each
γ ∈ supp(g), 
E f(γ) ≤Add(ω1,1) g(γ).

To see that R∗ is countably closed in V [Gδ], it is sufficient to notice that the
quotient forcing D = (Q � δ)/Hδ is ω-distributive, which is due to our product
analysis in Claim 3.8. In particular, V [Gδ] |= ωV [Hδ] ⊂ V [Hδ], R∗ ∈ V [Hδ] and
R∗ is countably closed in V [Gδ].

Notice that in V [Gδ], Q/Gδ is forcing equivalent to the poset B such that
(s, f) ∈ B iff s ∈ E and f is a countably supported function with domain [δ, κ)
and range(f) ⊂ V [Hδ] such that for any α ∈ supp(f), 
E�α f(α) ∈ Add(ω1, 1).
The order in B is given by (s′, f ′) ≤ (s, f) iff s′ ≤E s, supp(f ′) ⊃ supp(f)
and for each α ∈ supp(f), s′ � α 
E�α f ′(α) ≤Add(ω1,1) f(α). By a similar
argument as in Claim 3.8, we check that id : E × R∗ → B is a projection in
V [Gδ]. To see this, for each (s, f) ∈ E × R∗, and each (s′, f ′) ≤B (s, f), we
need to find (s′′, f ′′) ≤E×R∗ (s, f) such that (s′′, f ′′) ≤B (s′, f ′). Let s′′ = s′ and
supp(f ′′) = supp(f ′). For each α ∈ supp(f ′′), define f ′′(α) ∈ V [Hδ] such that

E�α f ′′(α) ≤ f ′(α) and s′ � α 
E�α f ′′(α) ≤ f ′(α). This can be achieved by
applying the maximality principle in V [Hδ] to E � α.

In V [Hδ], let Ṙ∗ be the D-name for the countably closed poset as above. In

V [Hδ], let Ṫ be a D-name for a Baire tree. Then D ∗ (Ṫ × Ṙ∗) is ω-distributive by
Claim 3.9. By Lemma 3.3, in V [Hδ] we have 
D∗(Ṫ×Ṙ∗) E is c.c.c. This means in

V [Gδ], 
T×R∗ E is c.c.c. In particular, we know that in V [Gδ], T ×R∗ is Baire and
E is c.c.c. By Lemma 1.21 and Remark 1.20, 
E R∗ × T is ω-distributive, hence
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E
R∗ T is Baire. Since in V [Gδ], E ×R∗ projects onto Q/Gδ, we know 
Q/Gδ T
is Baire.

�

Proof of Corollary 1.13. In fact, we show that in the forcing extension by Q, sRCB

holds and any ℵ1-subtree of σ(R) is special. The latter clearly implies the failure
of RC by Observation 3.2. Claim 3.8 implies that ω1 is preserved.

Let G be generic for Q. As Q projects onto Pκ (Claim 3.7), we can find H ∈ V [G]
that is V -generic for Pκ. Let T ∈ V [G] be a Baire tree of size θ. Without loss of

generality, we may assume T = (θ,<T ). Let Ṫ be a Q-name for T . Let j : V →M
witness that κ is λ-supercompact for some sufficiently large regular cardinal λ > θ.
We may choose λ large enough so that it is larger than the cardinality of any nice
Q-name of a subset of θ. Since Q ⊂ Vκ is κ-c.c., we see that j � Q = id � Q is a
complete embedding. Hence we can view Q as an initial segment of j(Q). In fact,
Q = j(Q) � κ.

By the choice of λ, we know Ṫ ∈M . Hence T ∈M [G]. By Claim 3.10, we know
that in M [G], 
j(Q)/G T is Baire. Let K ⊂ j(Q)/G be generic over M [G], then

we can lift j to an elementary embedding j+ : V [G] → M [G ∗K]. In M [G ∗K],
|T | = θ < j+(κ) = (ω2)M [G∗K]. Since j′′θ ∈M [G∗K] and (T,<T ) is isomorphic to
(j′′θ,<j(T )), we know that M [G ∗K] |= there exists a subtree A ⊂ j(T ) such that

|A| ≤ ℵ1 and A is Baire. By the elementarity of j+, the same statement is true in

V [G]. We have then shown that V [G] |= sRCB .
Finally we show that any ℵ1-subset of σ(R) is special. Let A ⊂ σ(R) be a

ℵ1-subset in V [G]. Note that Q/H is ω-distributive, so (σ(R))V [G] = (σ(R))V [H].
Since Q is κ-c.c. and so is Pκ, Q/H is κ-c.c in V [H]. Thus there exists A′ ∈ V [H]

and A′ ⊂ σ(R) of size < κ such that in V [H], 
Q/H Ȧ ⊂ A′, where Ȧ ∈ V [H] is
a Q/H-name for A. As A′ is special in V [H] (hence also in V [G]) and A ⊂ A′ in
V [G], A is also special in V [G].

�

4. Consistency of sRCB + MAω1
(BIP)

Definition 4.1. Fix a poset P , a sufficiently large cardinal λ, a countable M ≺
H(λ) containing P and a countable sequence 〈Dn : n ∈ ω〉 of dense subsets of
P ∩ M . We say P is semi-strongly proper for M and 〈Dn : n ∈ ω〉 if for any

p ∈ P ∩M , there exists q ≤ p, such that for all n ∈ ω, q 
 Dn ∩ Ġ 6= ∅, where Ġ
is the canonical name of a generic filter. We say such q is semi-strongly generic for
M and 〈Dn : n ∈ ω〉 (or just 〈Dn : n ∈ ω〉 if M is clear from the context).

Note that in the definition above we do not require Dn = D∩M for some D ∈M .

Remark 4.2. In the following, when the model M is clear from the context, we will
just say P is semi-strongly proper for 〈Dn : n ∈ ω〉.

Definition 4.3. For any poset P , P is semi-strongly proper if for any sufficiently
large λ, any M ≺ H(λ) countable containing P and any countable sequence 〈Dn :
n ∈ ω〉 of dense subsets of P∩M , P is semi-strongly proper for M and 〈Dn : n ∈ ω〉.

Remark 4.4. Note that the class of semi-strongly proper forcings here properly
contains the class of strongly proper forcings in the sense of Mitchell [25]. Strongly
proper forcings always add Cohen reals (see the remark after Definition 1.8 in [16])
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while any countably closed forcing will be semi-strongly proper. To see the latter,
suppose P is countably closed and M, 〈Dn : n ∈ ω〉, p are given as in Definition
4.3. We can build a decreasing sequence 〈pn ∈ P ∩M : n ∈ ω〉 such that p0 = p
and pn+1 ∈ Dn for all n ∈ ω. The reason why we can do this is that each Dn is a
dense subset of P ∩M for any n ∈ ω. Any lower bound p∗ for 〈pn : n ∈ ω〉 will be
the desired semi-strongly generic condition for M and 〈Dn : n ∈ ω〉. Shelah ([29],
Chapter IX, Definition 2.6 in page 441) used the name “strongly proper forcings”
to refer to what we call “semi-strongly proper forcings” here. We do this to avoid
confusion.

In general, Baire trees are preserved when forcing with semi-strongly proper
posets.

Lemma 4.5. Let T be a Baire tree and P be a semi-strongly proper poset. Then

T P is semi-strongly proper. In particular, after Remark 1.20 and Lemma 1.21,

P T is Baire.

Proof. Let H ⊂ T be generic over V . In V [H], let λ be large enough and let
countable M ≺ H(λ) be such that M ∩H(λ)V ≺ H(λ)V contains P . Let p ∈M ∩P
and a sequence of dense subsets of M ∩P , say D̄ = 〈Dn : n ∈ ω〉 be given. For any
n ∈ ω, since Dn ⊂ M ∩ P = (M ∩H(λ)V ) ∩ P and is countable, by the countable
distributivity of T , we know that Dn ∈ V . Applying the countable distributivity
of T one more time, we get that 〈Dn : n ∈ ω〉 ∈ V . Since in V , P is semi-strongly
proper for M∩H(λ)V , there exists q ≤ p that is semi-strongly generic for M∩H(λ)V

and D̄, namely q 
P Dn ∩ Ġ 6= ∅ for all n ∈ ω. But this property persists to V [H]
by the absoluteness of the definability of forcing.

Notice what we have shown is that in V [H], for sufficiently large λ, there exists
a club subset of [H(λ)]ω witnessing the semi-strong properness of P . By the stan-
dard trick (see for example Theorem 2.13 in [1]), we can eliminate the club in the
statement.

�

We will use the theorem due to Feng in the following remark.

Theorem 4.1 (Feng [10], Theorem 2.3). Fix a poset P. Then P is ω-distributive
iff for any p ∈ P, for any sufficiently large regular cardinal λ, the following set is
stationary in Pω1

(H(λ)):

Sp = {M ≺ H(λ) : |M | = ℵ0, {P, p} ∈M,∃p∗ ≤ p ∀dense D ⊂ P

(D ∈M)→ (∃p′ ∈ D ∩M p∗ ≤P p
′)}.

Remark 4.6. The reader may notice that we restrict our attention to proper forcings.
This is natural since any forcing that preserves all Baire trees is necessarily proper.
To see this, let P be a given forcing that preserves all Baire trees. Let λ ≥ ω1

be a given cardinal and S ⊂ [λ]ω be a stationary subset. We may assume for any
x ∈ S, x ∩ ω1 ∈ ω1. We need to show P preserves the stationarity of S. Suppose
for the sake of contradiction that there are a P -name ḟ : λ<ω → λ and p ∈ P such
that p 
 “∀x ∈ S, x is not closed under ḟ”. For any A,B ∈ [λ]ω, define A . B iff
A ⊂ B, A ∩ ω1 < B ∩ ω1 and sup(A) < sup(B).

Consider the tree T (S) defined as follows: t ∈ T (S) iff there exists γ < ω1 such
that t : γ + 1 → S is a continuous function satisfying that for any α < β ≤ γ,
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t(α) . t(β). The order in T (S) is end extension. For each t ∈ T (S), let max(t)
denote the .-maximal element in the image of t.

First note that in V , T (S) is Baire (Todorčević [31]). Let G ⊂ P containing
p be generic over V . By the hypothesis, (T (S))V is Baire in V [G]. We work in
V [G]. Let θ be a sufficiently large regular cardinal. By Theorem 4.1, L =def

{M ∈ [H(θ)]ω : M ≺ H(θ),∃t′ ∈ (T (S))V ,∀dense D ⊂ (T (S))V (D ∈ M → ∃t ∈
D ∩M t ≤(T (S))V t′)} is a stationary subset of [H(θ)]ω. Fix M ∈ L containing

λ, (T (S))V such that M ∩λ is closed under f = (ḟ)G. Let δ =def M ∩ω1. For each
α ∈M ∩λ and β ∈ δ, consider Dα,β = {t ∈ (T (S))V : α ∈ max(t),dom(t) ≥ β+ 1}
and notice that each Dα,β is a dense subset of (T (S))V in M . Let t′ ∈ (T (S))V

be such that for any (α, β) ∈ (M ∩ λ)× δ, there exists some tα,β ∈ Dα,β ∩M such
that tα,β ≤(T (S))V t′. In particular, this implies that for any β ∈ δ, t′(β) ∈ M
hence t′(β) ⊂ M and for any α ∈ M ∩ λ, there is some β ∈ δ such that α ∈ t′(β).
Consequently, by continuity, t′(δ) =

⋃
β<δ t

′(β) = M ∩ λ. Since t′ ∈ (T (S))V , we

know that M ∩λ ∈ S. Hence in V [G], we have found an element in S that is closed
under f , which is a contradiction.

Remark 4.7. It is a theorem of Shelah (Theorem 2.7 and Remark 2.7A in [29],
Chapter IX, Page 441) that countable support iteration of semi-strongly proper

forcings is semi-strongly proper. As a result, we can get the consistency of sRCB +
MAω1

(semi-strongly proper) rather easily. To see this, start with a ground model
with a supercompact cardinal κ. We can perform a countable support iteration of
semi-strongly proper forcings guided by a Laver function of length κ. It follows as
in the standard proof of the consistency of PFA (see Section 24 in [5] for a proof)
that the final model satisfies MAω1

(semi-strongly proper). The reason why the final

model satisfies sRCB is because any tail of the iteration is semi-strongly proper by
the aforementioned theorem of Shelah, which in turn implies that it preserves Baire
trees by Lemma 4.5. A standard reflection argument, which can be easily adapted
from the proof of Theorem 1.5 presented at the end of this section, shows that RCB

also holds in this model.
However, it is not clear if MAω1

(semi-strongly proper) is strong enough to ensure
the failure of RC because of the following restriction:

Claim 4.8. The Baumgartner specializing forcing P =def S(σ(R)), as defined in
Section 3 before Theorem 3.1, is not semi-strongly proper.

Proof. Suppose for the sake of contradiction that P is semi-strongly proper and let
ġ be the P -name for the generic specializing function. Let λ be a sufficiently large
regular cardinal such that P, ġ and all relevant parameters belong to H(λ).

First we will find a countable M ≺ H(λ) containing ġ, P with δ =def M ∩ ω1

and t′ ∈ σ(R) of height δ such that for any α < δ, t′ � α ∈ M . Notice that for
any t ∈ σ(R), r > sup(t) and α > ht(t), there exists an extension t′ of t such that
r > sup(t′) and α = ht(t′). The reason is that for any non-empty open interval
(a, b) of the reals with the usual ordering embeds any countable ordinal. Fix some
r ∈ R. Construct recursively 〈Mi ≺ H(λ) : i ∈ ω〉 and 〈ti : i ∈ ω〉 such that
ġ, P ∈M0 and

(1) Mi is countable,
(2) Mi ⊂Mi+1, ti ≤σ(R) ti+1 and ti ∈Mi+1,
(3) ht(ti) = δi where δi =def Mi ∩ ω1,
(4) sup(ti) < r.
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To see how the construction is carried out, suppose we have defined Mi, ti satisfying
the above. Let Mi+1 ⊃Mi be any countable elementary submodel of H(λ) contain-
ing ti. Let ti+1 be an extension of ti such that ht(ti+1) = δi+1 and sup(ti+1) < r.
Let M =

⋃
i∈ωMi and t′ =

⋃
i∈ω ti. It is easy to check that M and t′ are as desired.

Fix an increasing sequence of countable ordinals 〈δi : i ∈ ω〉 converging to δ. For
each n ∈ ω, consider Dn = {p ∈ P ∩M : ∃i ∈ ω p 
 ġ(t′ � δi) = n}. Each Dn is a
dense subset of P ∩M , since given p ∈ P ∩M , if it is not already true that there
exists i ∈ ω such that p(t′ � δi) = n, then we can always find an extension of p in
P ∩M that satisfies the property as the domain of p is finite. By the assumption
that P is semi-strongly proper, we can find q ∈ P such that q 
 Dn ∩ Ġ 6= ∅ for all
n ∈ ω. Let q′ ≤ q and m ∈ ω such that q′ 
 ġ(t′) = m. Since q′ 
 Dm ∩ Ġ 6= ∅,
there exists q′′ ≤ q′ and i ∈ ω such that q′′ 
 ġ(t′ � δi) = m. This contradicts the
fact that ġ is forced to be a specializing function.

�

There are other natural examples of BIP forcings that are not semi-strongly
proper, like the Laver forcing ([40], Corollary 4.1.7).

Remark 4.9. It may be tempting to conjecture that for a Baire tree T , any countable
support iteration of proper forcings that preserve the Baireness of T preserves the
Baireness of T . However, in general this is false. In fact, it is consistent that
there exists a Baire tree T and a countable support iteration of proper forcings
〈Pi, Q̇j : i ≤ ω, j < ω〉 such that 
Pi T is Baire for all i < ω, but 
Pω T is special.
For one such example, see the proofs of Lemma 4.6 and Theorem 4.7 in Shelah [29],
Chapter IX, Pages 455 - 457.

In light of Remark 4.9, we need to consider a stronger property that implies
Baire-preserving so that this property is also preserved under countable support
iteration. This class should also include semi-strongly proper forcings. The class
BIP (see Definition 1.11) turns out to be as desired.

Definition 4.10. Fix M ≺ H(λ) countable containing all relevant objects, in-

cluding a countable support iteration of proper forcings 〈Pi, Q̇j : i ≤ α, j < α〉.
Let C be a countable collection of dense subsets of Pi ∩ M for possibly several
i ∈ M ∩ α + 1. We say C is closed under operations with respect to M (if M
is clear from the context we will just say C is closed under operations) if for any
D ∈ C, γ < γ′ ∈ M ∩ α + 1 such that D is a dense subset of Pγ′ ∩M and any
(p, q̇) ∈ M ∩ (Pγ ∗ P[γ,γ′)), the set AD,γ,(p,q̇) = {r ∈ Pγ ∩M : r ⊥ p ∨ ∃q̇′ (r′ =def

(r, q̇′) ∈ D ∩M, r′ ≤ (p, q̇))} is also in C. We let Cγ to denote the collection of
D ∈ C such that D is a dense subset of Pγ ∩M .

Remark 4.11. In order for the definition above to make sense, we need to verify
AD,γ,(p,q̇) as defined is dense in Pγ ∩M . But this is clear.

Claim 4.12. Let M and 〈Pi, Q̇j : i ≤ α, j < α〉 be as in Definition 4.10. For any
C closed under operations, and γ ∈ M ∩ α+ 1, suppose G ⊂ Pγ is generic over V
such that G meets all the dense sets in Cγ , then in V [G], for any D ∈ Cγ+1, the
set (D)G =def {(q̇)G : ∃p ∈ G (p, q̇) ∈ D} is dense in M [G] ∩Qγ .

Proof. In V [G], let t ∈ M [G] ∩ Qγ . Let ṫ ∈ M be its name. Since M [G] ≺
H(λ)V [G], we know that there exists p ∈ G ∩ M [G] ∩ Pγ ⊂ M ∩ Pγ such that

p 
 ṫ ∈ Q̇γ . Consider AD,γ,(p,ṫ), which is a set in Cγ by the closure assumption.
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Since G ∩ AD,γ,(p,ṫ) 6= ∅, we can pick r in the intersection. By the definition
of AD,γ,(p,ṫ) and the fact that r, p ∈ G which implies they are compatible, there

exists τ̇ ∈ M such that (r, τ̇) ∈ D and is below (p, ṫ). But then since r ∈ G,
(τ̇)G ∈ (D)G ⊂M [G] ∩Qγ and is stronger than t. �

Before we proceed with our iteration lemma, we need an extension lemma due
to Shelah ([29], Theorem 2.7 and Remark 2.7A) about iteration of semi-strongly
proper posets. Since the presentation in [29] is in terms of ℵ1-free limit and is
relatively dense, we include a proof as a service to the reader.

Lemma 4.13 (Shelah). Let 〈Pi, Q̇j : i ≤ α, j < α〉 be a countable support iteration
of proper forcings and let M ≺ H(λ) be countable and contain all relevant objects
including Pα. Fix α0 ∈M ∩α. Suppose C is a countable collection of dense subsets
of Pγ ∩M for possibly several γ ∈M ∩ (α+ 1) closed under operations.

Suppose for each γ ∈M ∩α and q ∈ Pγ that is semi-strongly generic for M and

Cγ , q 
Pγ “Q̇γ is semi-strongly proper for M [Ġγ ] and (Cγ+1)Ġγ =def {(D)Ġγ :
D ∈ Cγ+1}”.

If q ∈ Pα0 is semi-strongly generic for Cα0 and ṗ is a Pα0-name such that

q 
Pα0
ṗ ∈ Pα ∩M, ṗ � α0 ∈ Ġα0

,

then there exists q′ ∈ Pα, q′ � α0 = q and q′ is semi-strongly generic for Cα and

q′ 
Pα ṗ ∈ Ġα.

Proof. We proceed by induction on α. If α = β + 1, fix such M ≺ H(λ) countable
containing the iteration and α0 ∈M ∩ α. Note that β ∈M . Let q ∈ Pα0 , and ṗ ∈
V Pα0 be as given. Apply the induction hypothesis, we get q′ ≤ q, q′ ∈ Pβ , q′ � α0 = q

such that q′ is semi-strongly generic for Cβ and q′ 
Pβ “ṗ � β ∈ Ġβ and ṗ ∈ Pα∩M”.

By the hypothesis and Claim 4.12, we have q′ 
Pβ “Q̇β is semi-strongly proper for

M [Ġβ ] and (Cβ+1)Ġβ”. Let Gβ ⊂ Pβ be generic over V containing q′. Then in
V [Gβ ], (ṗ)Gβ = p ∈ Pα ∩ M . Since in V [Gβ ], Qβ is semi-strongly proper for
M [Gβ ] and (Cβ+1)Gβ , there exists t ≤Qβ (p(β))Gβ that is semi-strongly generic for

(Cβ+1)Gβ . Let ṫ be a Pβ-name for t such that q′ forces it satisfies all the properties
above, which exists by the maximality principle of forcing. Hence (q′, ṫ) is the

desired extension. Indeed, (q′, ṫ) 
Pα “ṗ ∈ Ġα”, (q′, ṫ) � α0 = q′ � α0 = q and
(q′, ṫ) is semi-strongly generic for Cα (which is easily implied by the fact that q′ is

semi-strongly generic for Cβ and q′ 
 “ṫ is semi-strongly generic for (Cβ+1)Ġβ”).
When α is a limit, list {Dn : n ∈ ω} in Cα and fix α0 ∈M ∩α, q ∈ Pα0

and ṗ as
in the hypothesis. Fix an increasing 〈αi ∈M ∩ α : i ∈ ω〉 cofinal in sup(M ∩ α).

We build the following sequences: 〈qi : i < ω〉, 〈ṗi : i < ω〉 such that

• ṗ0 = ṗ, q0 = q,
• qi ∈ Pαi is semi-strongly generic for Cαi ,
• ṗi is a Pαi-name,

• qi+1 
Pαi+1
“ṗi+1 ∈ Pα ∩M, ṗi+1 � αi+1 ∈ Ġαi+1

, ṗi+1 ≤ ṗi, ṗi+1 ∈ Di”,

• qi+1 � αi = qi.

If the construction is successful, then by the standard argument as in the proper-
ness preservation theorem (see for example [1], Lemma 2.8), we will be done.
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Now we demonstrate for given qi, ṗi, how to find qi+1, ṗi+1 satisfying the re-
quirements. Let Gαi ⊂ Pαi be generic over V containing qi. In V [Gαi ], we have
pi = (ṗi)

Gαi ∈ Pα ∩M and pi � αi ∈ Gαi . Consider the set ADi,αi,pi ∈ Cαi . By
the semi-strong genericity of qi with respect to Cαi , Gαi ∩ADi,αi,pi 6= ∅. Fix some
r ∈ Gαi ∩ADi,αi,pi . Then there exists (r, q̇) ∈ Di with (r, q̇) ≤ pi.

By the maximality principle of forcing we can find a Pαi-name ṗi+1 such that

qi 
Pαi “ṗi+1 ≤ ṗi, ṗi+1 ∈ Di ⊂M ∩Pα and ṗi+1 � αi ∈ Ġαi”. Apply the induction
hypothesis, we can get qi+1 ∈ Pαi+1 with qi+1 � αi = qi, qi+1 is semi-strongly

generic for Cαi+1
and qi+1 
Pαi+1

“ṗi+1 � αi+1 ∈ Ġαi+1
”.

�

Corollary 4.14. Let 〈Pi, Q̇j : i ≤ α, j < α〉 be a countable support iteration of
proper forcing. Let M ≺ H(λ) be countable and contain Pα. Let C be a countable
collection of dense subsets of Pγ ∩M for possibly several γ ∈ M ∩ (α + 1) closed
under operations.

Suppose for each γ ∈M ∩α and q ∈ Pγ that is semi-strongly generic for M and

Cγ , q 
Pγ Q̇γ is semi-strongly proper for M [Ġγ ] and (Cγ+1)Ġγ .
Then for each p ∈ M ∩ Pα, there exists q ≤ p that is semi-strongly generic for

Cα.

Proof. Apply Lemma 4.13 with α0 = 0. �

Our main idea is that in order to prove properness of a poset in a countably
distributive extension, it suffices to prove semi-strong properness in the ground
model with respect to the relevant collection of dense sets.

The following iteration lemma is key to the proof of the main theorem.

Lemma 4.15 (Key Lemma). Let T be a Baire tree and 〈Pi, Q̇j : i ≤ α, j < α〉 be

a countable support iteration of proper forcings such that for each i < α, 
T×Pi Q̇i
is proper. Then 
T Pα is proper.

Remark 4.16. Notice in Lemma 4.15 there is some abuse of notation, in that Q̇i is
actually a Pi-name, but it can be canonically identified as a (T ×Pi)-name, say Q̇′i.

So here we really mean 
T×Pi Q̇
′
i is proper. But in general, there is only one way

of interpretation based on the context, so we confuse Q̇i with Q̇′i. We extend this
practice to other similar situations.

Proof. We proceed by induction on α. If α = β + 1, then by the hypothesis,

T×Pβ Q̇β is proper. Let H ⊂ T be generic over V . We need to show that
V [H] |= Pα is proper. We will be done once we realize that in V [H], Pα is a

dense subset of Pβ ∗ Q̇β , since by the hypothesis, V [H] |= Pβ ∗ Q̇β is proper. The
difference between these two sets is Pα is the two-step iteration defined in V ,
so (p, q̇) ∈ Pα → (p, q̇) ∈ V while Pβ ∗ Q̇β is the iteration defined in V [H] which

may contain (p, q̇) where q̇ 6∈ V . Given (p, q̇) ∈ Pβ ∗ Q̇β , we have p 
 q̇ ∈ Q̇β . Since

Q̇β is a Pβ-name living in V , we know p 
 ∃ṫ ∈ V ṫ = q̇. Let p′ ≤ p and ṫ ∈ V be
such that p′ 
 ṫ = q̇. Then (p′, ṫ) ≤ (p, q̇) and (p′, ṫ) ∈ Pα.

When α is a limit ordinal, let H ⊂ T be generic over V . In V [H], let λ be a large
enough regular cardinal, and M ≺ H(λ) be countable containing relevant objects
including Pα such that M ∩ H(λ)V ≺ H(λ)V . Note since V [H] is a countably
distributive extension of V , we have that M ′ =def M ∩H(λ)V ∈ V .
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For each γ ∈ M ∩ (α + 1), enumerate the dense subsets of Pγ in M as D̄γ =
{Dγ

n : n ∈ ω}. Let D̄γ � M = {Dγ
n ∩M : n ∈ ω}. As each Dγ

n ∩M ⊂ Pγ ∩M =
Pγ ∩M ′ ⊂ V , by countable distributivity, we have D̄γ �M ∈ V .

Claim 4.17.
⋃
γ∈M∩(α+1) D̄

γ �M ∈ V is closed under operations.

Proof of the Claim. For any γ′ ≤ α, γ < γ′ ∈ M , p ∈ Pγ′ ∩ M and any dense
D ⊂ Pγ′ with D ∈ M , we need to show that AD∩M,γ,p ∈ D̄γ � M . But this is
immediate from the fact that A′ = {r ∈ Pγ : r ⊥ p � γ ∨ ∃q̇′ r′ =def (r, q̇′) ∈
D, r′ ≤ p} is a dense subset of Pγ living in M and AD∩M,γ,p = A′ ∩M ∈ D̄γ � M
by elementarity. �

Claim 4.18. In V , for each γ ∈M∩α and any q ∈ Pγ that is semi-strongly generic

for D̄γ �M , q 
Pγ Q̇γ is semi-strongly proper for M ′[Ġγ ] and (D̄γ+1 �M)Ġγ .

Proof of the claim. Fix ṙ ∈ M a Pγ-name for a condition in Q̇γ . Let Gγ ⊂ Pγ be

generic over V [H] containing q, then V [H × Gγ ] |= Qγ = (Q̇γ)Gγ is proper with
respect to M [Gγ ]. Let r ≤ (ṙ)Gγ be a (M [Gγ ], Qγ)-generic condition. We claim
that in V [Gγ ], r is semi-strongly generic for (D̄j+1 �M)Gγ . Then the claim follows
immediately.

The fact that, in V , q is semi-strongly generic for D̄γ �M implies that in V [H],
q is (M,Pγ)-generic. Therefore, for each Dγ+1

n ∈ D̄γ+1, (Dγ+1
n )Gγ is a dense subset

of Qγ = (Q̇γ)Gγ living in M [Gγ ]. Fix n ∈ ω. Since in V [H][Gγ ], r is (M [Gγ ], Qγ)-

generic, we know r 
Qγ “(Dγ+1
n )Gγ ∩M [Gγ ] ∩ Ẇ 6= ∅”, where Ẇ is the canonical

name for the generic filter. To see that this implies r 
Qγ “(Dγ+1
n ∩M)Gγ ∩ Ẇ 6=

∅”, let W ⊂ Qγ be generic over V [H][Gγ ] containing r. In V [H][Gγ ][W ], there
exists ṫ ∈ M such that (ṫ)Gγ ∈ (Dγ+1

n )Gγ and (ṫ)Gγ ∈ W . Since both (ṫ)Gγ and

(Dγ+1
n )Gγ are in M [Gγ ] ≺ (H(λ))V [H][Gγ ], M [Gγ ] |= ∃p ∈ Gγ∃l̇ (p, l̇) ∈ Dγ+1

n and

(ṫ)Gγ = (l̇)Gγ . Find (p, l̇) ∈ Dγ+1
n ∩M [Gγ ] witnessing the statement above. Since q

is (M,Pγ)-generic and Gγ contains q, we know M [Gγ ]∩ V [H] = M . So (p, l̇) ∈M .

Hence in V [H][Gγ ][W ], we have found (l̇)Gγ ∈ (Dγ+1
n ∩M)Gγ ∩W .

We claim that V [Gγ ] models the same statement, namely

r 
Qγ (Dγ+1
n ∩M)Gγ ∩ Ẇ 6= ∅.

Suppose not for the sake of contradiction. In V [Gγ ] we can extend r to r′ to
force the negation of the statement. Let W ⊂ Qγ containing r′ be generic over
V [H][Gγ ]. Then V [Gγ ∗ W ] |= (Dγ+1

n ∩ M)Gγ ∩ W = ∅ but V [H][Gγ ∗ W ] |=
(Dγ+1

n ∩ M)Gγ ∩ W 6= ∅. By the product lemma, V [Gγ ∗ W ] is a submodel of
V [H][Gγ ∗W ] and the statement is absolute between these two models. We thus
get a contradiction.

�

Work in V . By Claim 4.17, Claim 4.18 and Corollary 4.14, we can conclude that
Pα is semi-strongly proper for M ′ and D̄α � M . Using the same argument as in
Lemma 4.5, we conclude that in V [H], Pα is proper with respect to M .

�

Theorem 4.2. Countable support iteration of BIP forcings is BIP.

Proof. Let 〈Pi, Q̇j : i ≤ α, j < α〉 be the iteration and T be a given Baire tree. We
show this by induction. If α = β + 1, then by the induction hypothesis, 
T Pβ
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is proper. In particular by Lemma 1.21 and Remark 1.20, 
Pβ T is Baire. Since


Pβ Q̇β is Baire indestructible, we have 
Pβ
T Q̇β is proper. Hence by the product

lemma, 
T “Pβ is proper and 
Pβ Q̇β is proper”. Since 
T “(Pβ+1)V is a dense

subset of Pβ ∗ Q̇β”, we see that 
T “Pβ+1 is proper”. If α is a limit, we check the
hypothesis in the Key Lemma 4.15 is satisfied. For each β < α, by the induction
hypothesis, 
T Pβ is proper. Arguing as above, we have that 
T×Pβ Q̇β is proper.
Hence the hypothesis of Key Lemma 4.15 is satisfied, so we can conclude that

T Pα is proper. �

Corollary 4.19. Countable support iteration of BIP forcings preserve Baire trees.

Proof. Immediately from Lemma 1.21, Remark 1.20 and Theorem 4.2. �

Proof of Theorem 1.5. Let κ be a supercompact cardinal. Let 〈Pα, Q̇α : α < κ〉
be the countable support iteration of BIP forcings guided by a Laver function of
length κ. In this model, MAω1

(BIP) holds and κ = ω2 (see Section 24 in [5] for more

details). We claim that sRCB holds in this model. Let G be a generic for Pκ. Let
T ∈ V [G] be a Baire tree of height ω1. Let the size of T be θ. Furthermore, we may

assume T is of the form (θ,<T ). Let Ṫ be a Pκ-name for T . Let λ >> max{|Ṫ |, κ, θ}
be a sufficiently large regular cardinal.

Fix an elementary embedding j : V →M witnessing the λ-supercompactness of
κ, namely, λM ⊂ M , crit(j) = κ and j(κ) > λ. Let H ⊂ j(Pκ)/G be generic over
V [G]. Then we can lift j to an elementary embedding from V [G] to M [G][H]. We
will slightly abuse the notation by still using j to refer to the lifted embedding in
V [G][H]. Notice by the closure assumption, we have j′′θ, T ∈M [G][H].

By Corollary 4.19, T remains Baire in M [G][H]. Since M [G][H] |= (T,<T ) '
(j′′θ,<j(T )), we know that M [G][H] |= j(T ) has a Baire subtree of size < j(κ). By
the elementarity of j, in V [G], T has a Baire subtree of size < κ = ω2. �

The following lemma gives yet another model separating RCB from RC.

Lemma 4.20. MAω1
(BIP) implies all ℵ1 subtrees of σ(R) are special.

Proof. This just follows from the observation that for any ℵ1 subset T ′ of σ(R), the
Baumgartner specializing forcing for T ′ is BIP (see Theorem 3.1). �

5. The strength and limitations of the Baire Rado’s Conjecture

Definition 5.1. For any regular cardinal λ and stationary S ⊂ λ, we say S reflects
if there exists β ∈ λ ∩ cof(> ω) such that S ∩ β is stationary in β. Given a
family S of stationary subsets of λ, we say S reflects simultaneously if there exists
β ∈ λ ∩ cof(> ω) such that for each S ∈ S, S ∩ β is stationary.

Todorčević ([32], Theorem 8) showed that RC implies any stationary subset of
λ ∩ cof(ω) reflects for any regular λ ≥ ω2. The proof there uses some equivalent

characterizations of RC. We include a short argument here (from RCB actually)
using directly the tree formulation of RC as in Definition 1.5 and 1.9. It is worth
noting that Sakai derives the same conclusion from the Semistationary Reflection
Principle (see [27]), which is a consequence of RCB by Theorem 5.2.

Theorem 5.1 (Todorčević). RCB implies any stationary subset of λ ∩ cof(ω) re-
flects for regular cardinal λ ≥ ω2.
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Proof. Let S ⊂ λ ∩ cof(ω) be given. Let T (S) be the tree consisting of functions
t : γ+ 1→ S for some γ < ω1, such that t is increasing and continuous, ordered by
end extension. For t ∈ T (S), let max(t) denote the maximal element in the image
of t. The stationarity of S implies T (S) is Baire by the standard argument (see
Theorem 23.8 in [18]). For any subtree T ⊂ T (S), let supT be sup{max(t) : t ∈ T}.

Apply RCB to T (S) and pick some ℵ1-sized nonspecial subtree T ⊆ T (S) with
the least supremum, say δ. The ordinal δ must have cofinality ω1. To see this,
suppose otherwise there exists an increasing sequence 〈δi : i ∈ ω〉 converging to δ.
By the minimality of δ, for each i ∈ ω, Ti =def {t ∈ T : max(t) ≤ δi : i ∈ ω}
is special. Notice that T ′ = {t ∈ T : max(t) = δ} is also special since it is an
antichain. Hence T =

⋃
i∈ω Ti ∪ T ′ is a countable union of special trees, which

implies that T is also special. This contradicts our assumption.
We claim that S∩δ is stationary. Suppose not for the sake of contradiction, then

there exists a club C ⊂ δ that is disjoint from S ∩ δ. Without loss of generality, we
can assume T is downward closed. Define a pressing down function f : T\{∅} → T
where for each t ∈ T of limit height, f(t) = s if s is the <T -least predecessor of
t such that (max(s),max(t)) ∩ C = ∅. By the Pressing Down Lemma for trees,
there exists a nonspecial subtree T ′ ⊂ T such that f gets constant value s with
γ = max(s). Then for each t ∈ T ′, max(t) ≤ min(C\γ) < δ. Hence sup(T ′) < δ.
By the minimality of δ, T ′ is special. This is a contradiction. �

Remark 5.2. The theorem above shows that RCB implies the ordinary stationary
reflection at ordinals of cofinality ω1. In general, RC does not imply stationary
reflection at ordinals of cofinality > ω1. In fact RC is compatible with the fact that
ℵω+1 ∩ cof(≥ ω2) carries a partial square (see the remark proceeding the Claim
in the section 5 of [13], page 192), which in turn implies the failure of the ordinal
stationary reflection at ordinals of cofinality ≥ ω2 (see Theorem 4.2 in [8]).

Similar to the argument above, we are able to present an alternative argument
that RCB implies Semi-stationary Reflection (SSR) due to Doebler [7].

Theorem 5.2 (Doebler, [7]). RCB implies SSR, where the latter means that for
any regular cardinal λ ≥ ω2 and any stationary S ⊂ [λ]ω upward closed under @
(x @ y iff x ⊂ y and x ∩ ω1 = y ∩ ω1), there exists W ∈ [λ]ω1 containing ω1 such
that S ∩ [W ]ω is stationary.

Proof. Fix λ, S as above. We may assume for any x ∈ S, x ∩ ω1 ∈ ω1.
Build the tree T (S) consisting of countable continuous .-increasing sequences

of elements in S, where for any a 6= b ∈ S, a . b iff a ⊂ b, a ∩ ω1 < b ∩ ω1

and sup(a) < sup(b). Hence by design, each element t in T (S) has a ⊂-maximum
element. Let max(t) denote this element. This tree is clearly Baire by the fact that
S is stationary.

Apply RCB , we can find a subtree T ′ ⊂ T such that T ′ is nonspecial. Let
W =

⋃
t∈T ′ max(t). We can choose such a T ′ such that sup(W ) is the least. Notice

that W ⊃ ω1 and cf(sup(W )) > ω. This follows from the fact that T ′ is nonspecial
and the minimality of cf(sup(W )).

We claim that S ∩ [W ]ω is stationary. Suppose not, then there exists a function
F : W<ω → W such that clF ∩ S = ∅. We may redefine F such that for any
y ∈ [W ]ω, F ′′y<ω = clF (y). For each t ∈ T ′, we have max(t) ∈ S, so by our
assumption, max(t) is not closed under F . In particular, F ′′max(t)<ω 6∈ S. Since
S is upward closed under @, we know that F ′′max(t)<ω ∩ω1 > max(t)∩ω1. Hence
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there exists āt ∈ max(t)<ω such that F (āt) ≥ max(t)∩ω1 and F (āt) ∈ ω1. We can
use this fact to define a regressive function, mapping each t ∈ T ′ of limit height
to the <T -least s ≤T t such that āt ⊂ max(s). By the Pressing Down Lemma for
nonspecial trees and the fact that special trees are closed under countable union,
there exists T ′′ ⊂ T ′ nonspecial and ā ∈ W<ω with F (ā) ∈ ω1 such that for each
t ∈ T ′′, F (ā) ≥ max(t) ∩ ω1. But this means that the height of T ′′ is bounded
above by F (ā), which is a contradiction to the fact that T ′′ is nonspecial.

�

From the aspect of simultaneous reflection, Theorem 5.1 is optimal.

Theorem 5.3. RCB does not imply any two stationary subsets of ω2 ∩ cof(ω)
reflects simultaneously.

Proof. We first prepare the ground model V such that it satisfies that RCB is inde-
structible under ω2-directed closed forcings. We can do this by Lévy collapsing κ to
ω2 where κ is a supercompact cardinal. The heart of the argument is the analysis
of the existence of a master condition needed to lift an elementary embedding in a
countably closed generic extension. We refer the reader to Cummings’ Chapter [5]
(specifically sections 9, 12, 14) in the Handbook of Set Theory for more details.

Let P be the standard poset that adds two stationary subsets of ω2∩ cof(ω) that
do not reflect simultaneously. More precisely, p ∈ P iff p = (p0, p1) where

• p0 and p1 are partial functions from ω2 to 2, taking value 1 only on ordinals
of countable cofinality,

• dom(p0) = dom(p1) < ω2,
• for no α < ω2, p0(α) = p1(α) = 1,
• for all β ∈ ω2 ∩ cof(ω1) and β ≤ dom(p0), there exists a club subset C ⊂ β

such that there is i < 2, for any α ∈ C, we have pi(α) = 0.

The elements in P are ordered by the coordinate-wise reverse inclusion. For p ∈ P,
we will sometimes abuse the notation by using dom(p) to mean dom(p0) in the
following. The proof in Example 6.5 of [5] easily adapts to show that P is ω2-
strategically closed and P adds the characteristic functions of two disjoint stationary
subsets of ω2 ∩ cof(ω) that do not reflect simultaneously.

Let Ṡ0, Ṡ1 be the P-name for the two stationary sets that are added by P. Define
in V P forcings Q̇i for shooting a club with closed initial segments through the
complement of Ṡi for each i < 2. It is a standard fact that P ∗ Q̇i has a dense
ω2-directed closed subset for any i < 2. To see this, fix i < 2. We may assume
i = 0 since the argument for the other case is symmetric. Consider A = {(p,B) ∈
P ∗ Q̇0 : dom(p0) = maxB + 1, p0 � B ≡ 0}. First we check that A is ω2-directed
closed. Suppose D = {(pα, Bα) ∈ A : α < ω1} is a given directed family. Let
p∞ = (p∞0 , p

∞
1 ) where p∞i =

⋃
α<ω1

pαi for i < 2 and B∞ =
⋃
α<ω1

Bα. Let

δ = dom(p∞). If there exists α < ω1 such that dom(pα) = δ, then we are done since
(pα, Bα) will be the strongest condition in D. Otherwise, B∞ is a closed unbounded
subset of δ such that p∞0 � B∞ ≡ 0. Then ((p∞0 ∪ {(δ, 0)}, p∞1 ∪ {(δ, 0)}), B∞ ∪ {δ})
will be a desired lower bound for D. Next we check that A is a dense subset of
P ∗ Q̇i. Given (p, q̇) ∈ P ∗ Q̇i, since P is ω2-strategically closed, there exist p0 ≤P p
and B0 ∈ V such that p0 
P B0 = q̇. We may assume that dom(p0) > max(B0). Let
γ > dom(p0). We can extend (p0, B0) to (p1, B1) by putting γ into B1 and setting
p1i (α) to 0 for any i < 2 and any dom(p0) ≤ α ≤ γ. Then (p1, B1) ≤P∗Q̇0

(p, q̇) and

(p1, B1) ∈ A.



22 JING ZHANG

Let G ⊂ P be generic over V . We show that V [G] is the desired model. To this
end, fix a Baire tree T ∈ V [G].

Claim 5.3. In V [G], it is forced by T that there exists i < 2, such that ωV2 ∩
cofV (ω)− Si remains stationary.

Proof. Otherwise, we can find H ⊂ T generic over V [G] such that in V [G ∗H], for

each i < 2, there is a club Ci ⊂ Si∪(ωV2 ∩cofV (ω1)). As T is Baire, cfV [G∗H](ωV2 ) >

ω. Hence in V [G∗H], the fact that S0∩S1 = ∅ implies that C0∩C1 ⊂ ωV2 ∩cofV (ω1)
is a club. But this implies that some ordinal whose cofinality is ω1 in V now has
cofinality ω in V [G ∗H]. This contradicts the ω1-distributivity of P in V and the
Baireness of T in V [G]. �

Claim 5.4. In V [G], it is forced by T that there exists i < 2, Q̇i is ω-distributive.

Proof. Work in V [G]. For any given t′ ∈ T , use Claim 5.3 to find t ≤ t′ and i < 2

such that t 
T ωV2 ∩ cofV (ω) − Si is stationary. Let H ⊂ T be generic over V [G]

containing t. We show V [G ∗ H] |= Qi = (Q̇i)
V [G] is ω-distributive. Let τ̇ be a

Qi-name for a ω-sequence of ordinals. Let M ≺ H(λ) be countable and contain
relevant objects such that γ = sup(M ∩ ωV2 ) 6∈ Si where λ is some large enough
regular cardinal. Fix a generic sequence 〈pi : i ∈ ω〉 for M so in particular for any
j < ω there exists some i < ω such that pi decides τ̇(j) and supi∈ω(pi) = γ. As T
is Baire in V [G], 〈pi : i ∈ ω〉 ∈ V [G]. Since γ 6∈ Si, we see that

⋃
i∈ω pi ∪ {γ} ∈ Qi,

which decides τ̇ . �

By Claim 5.4, in V [G], find t ∈ T and i < 2 such that t 
T Qi is ω-distributive.
Define T � t to be {s ∈ T : s ≤ t ∨ t ≤ s}. By the Product Lemma, 
Qi T � t is

Baire. Let R be generic for Qi over V [G]. Since P∗Q̇i has a ω2-directed closed dense

subset, it follows that V [G ∗R] |= RCB . Hence there exists a nonspecial T ′ ≤ T � t
of size ℵ1. Since over V [G], Qi is ω1-distributive, we know that T ′ ∈ V [G] and it
remains nonspecial in V [G].

�

Definition 5.5. Let µ be a cardinal. 〈Ai ⊂ µ : i < µ+〉 is said to be an almost
disjoint sequence if for each i < µ+, Ai is unbounded in µ and for each β < µ+,
there exists F : β → µ such that 〈Ai\F (i) : i < β〉 is pairwise disjoint. ADSµ
abbreviates the assertion that there exists such a sequence.

The interesting case of the above principle is when µ is singular. It is known ([6],
Theorem 4.1) ADSµ follows from the existence of a PCF-theoretic object called a
better scale at µ, which is in turn a consequence of �∗µ. It is a theorem of Shelah [30]
that if SCH fails, then the least ordinal where it fails (whose cofinality is necessarily
ω by a theorem of Silver) carries a better scale. On the other hand, Sakai and
Velickovic in [28] show that the Semistataionary Reflection principle implies there
is no better scale, extending the theorem of Todorčević [34] that RC implies SCH.

The fact that for singular µ of countable cofinality, ¬ADSµ follows from RC
is known: Torres-Pérez and Todorčević ([35], the proof of Theorem 3.1) showed
this via an equivalent form of RC characterized in [32]; Fuchino, Juhász, Soukup,
Szentmiklóssy, and Usuba [15] showed this via an intermediate principle called the
Fodor-type Reflection Principle or FRP (Fuchino [14] showed this principle is indeed

a consequence of RCB). We present an alternative proof of ¬ADSµ directly from

the tree formulation of RCB using the same ideas as those in Theorem 5.1 and 5.2.
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Proposition 5.6. RCB implies ¬ADSµ for all singular cardinal µ with cf(µ) = ω.

Proof. Suppose for the sake of contradiction that there exists 〈Ai : i < µ+〉 that
witnesses ADSµ. We may assume that each set in the sequence has order type ω.
Notice that S = {x ∈ [µ+]ω : Asup(x) ⊂ x} is stationary. See the proof of Theorem
4.2 in [6], page 52. We may without loss of generality assume that for any x ∈ S,
x∩ω1 ∈ ω1. Define T (S) as the tree for shooting a continuous ω1-sequence through
S. More precisely, t ∈ T (S) iff there exists γ < ω1 and t : γ + 1 → S that is
continuous increasing such that for any α < β ≤ γ, sup(t(α)) < sup(t(β)) and
t(α) ∩ ω1 < t(β) ∩ ω1. The order in T (S) is end extension. For each t ∈ T (S) with
domain γ + 1, let max(t) be t(γ).

Claim 5.7. T (S) is Baire.

Proof. Fix a countable collection of dense open subsets of T (S), say {Di : i ∈ ω}.
Let λ be a large enough regular cardinal and M ≺ H(λ) be countable and contain
relevant objects such that M∩µ+ ∈ S. Now build a sequence 〈ti ∈ T (S)∩M : i ∈ ω〉
such that

• t2i ∈ Di for all i ∈ ω,
• ti ≤T (S) ti+1 for all i ∈ ω,
• 〈dom(ti) : i ∈ ω〉 is cofinal in M ∩ ω1,
•
⋃
i∈ω max(ti) = M ∩ µ+.

It is easy to see that
⋃
i∈ω ti ∪ {〈M ∩ ω1,M ∩ µ+〉} is in

⋂
i∈ωDi. �

Apply RCB to T (S) and pick a nonspecial subtree T ′ ⊂ T (S) of size ℵ1. Let
W = {sup(max(t)) : t ∈ T ′}. By the almost-disjointness, there exists F : W → µ
such that 〈Ai\F (i) : i ∈W 〉 is pairwise disjoint.

Define a function f : T ′ → T ′ such that for each t ∈ T ′,
(1) if t is of successor height, then f(t) is its immediate predecessor in T ′,
(2) if t is of limit height f(t) is the <T ′ -least s ≤T ′ t such that there exists

α ∈ max(s) such that α ∈ Asup(max(t))\F (sup(max(t))).

Note that f is a regressive function: for each t ∈ T ′ of limit height, by continuity,
max(t) =

⋃
s<T ′ t

max(s). Since max(t) ∈ S, we know that Asup(max(t)) ⊂ max(t).

Therefore, if α is the least element in Asup(max(t))\F (sup(max(t))) ⊂ max(t), there
will be some s <T ′ t such that α ∈ max(s).

By the Pressing Down Lemma for trees and the countable completeness of non-
special trees, we can find a nonspecial subtree T ′′ ⊂ T ′ and α ∈ µ+ such that for
each t ∈ T ′′, α ∈ Asup(max(t))\F (sup(max(t))). By the fact that 〈Ai\F (i) : i ∈ W 〉
is pairwise disjoint, we know that for any t, t′ ∈ T ′′, sup(max(t)) = sup(max(t′)).
This means that T ′′ is an antichain, hence special, which is a contradiction. �

Remark 5.8. Cummings, Foreman and Magidor ([6], Theorem 4.2) showed that
WRP∗([µ+]ω) implies the failure of ADSµ, where WRP∗([µ+]ω) is the same as
WRP([µ+]ω) (see Definition 1.17) except that in addition we require that the re-
flected set W ∈ [λ]ω1 to satisfy that cf(sup(W )) = ω1. Recall the discussion after
Theorem 2.2 that in general RC does not imply WRP.

Remark 5.9. It follows from the work of Foreman and Magidor ([13], Section 5, the
Claim in page 16 and the discussion preceding it) that RC is compatible with the
Approachability Property at µ where µ is a singular cardinal of countable cofinality.
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The last part of this section is dedicated to discussing the interaction between
RC and certain weak square principles.

Definition 5.10. For any set of ordinals C, define lim(C) to be the collection of
accumulation points in C. Namely, lim(C) contains all γ such that γ = sup(C ∩γ).

Definition 5.11. Let λ be a regular cardinal and κ be a cardinal. �(λ, κ) asserts
the existence of a sequence 〈Cα : α ∈ lim(λ)〉 such that

• Cα is a non-empty ≤ κ-collection of clubs in α for each α ∈ lim(λ),
• for each α < β ∈ lim(λ) and C ∈ Cβ , if α ∈ lim(C), then C ∩ α ∈ Cα,
• there does not exist a thread, namely a club D ⊂ λ such that for any
α ∈ lim(D), D ∩ α ∈ Cα.

We will show that in general RC is compatible with �(λ, ω2) for any given regular
λ ≥ ω3. For uncountable regular cardinals λ, κ such that λ ≥ κ+, we will define a
κ-directed closed forcing which adds a �(λ, κ)-sequence.

Definition 5.12. Let P = P�(λ,κ) be the poset consisting of functions t where t is
a function of domain (γ + 1) × κ for some γ = γt < λ such that for all β ≤ γ and
i < κ, t(β, i) is a club in β and for any α < β ∈ lim(λ)∩γ+1, i < κ and a = t(β, i),
if α ∈ lim(a), then a∩α ∈

⋃
j<κ{t(α, j)}. We define t′ ≤P t iff t′ end extends t and

there exists η < κ such that for all ν > η, t(γt, ν) = t′(γt′ , ν) ∩ γt.

Let us collect some standard facts about this forcing.

Fact 5.13. The following hold:

(1) P is κ-directed closed,
(2) P is λ-strategically closed,
(3) forcing with P adds a �(λ, κ)-sequence.

Proof. (1) To see the poset is κ-directed closed, fix any directed collection
〈ti ∈ P : i < β〉 with β < κ. Since the ordering is end-extension, the
collection must be linearly ordered. Let t′ =

⋃
i<β ti. If this is a condition,

then we are done. Otherwise, let dom(t′) = γ = supi<β(γti). We need to
extend t′ to t whose domain is (γ+ 1)×κ. Clearly, we only need to specify
the values of t on {γ} × κ. For each i < β, there exists ji ∈ κ such that
for all k > ji, for all l < i, tl(γtl , k) = ti(γti , k) ∩ γtl . Let ν = supi<β(ji).
For each ν′ > ν, let t(γ, ν′) =

⋃
i<β ti(γti , ν

′) and for each µ ≤ ν, let

t(γ, µ) = t(γ, ν + 1) . It is easy to see that t as defined is a desired lower
bound for 〈ti ∈ P : i < β < κ〉.

(2) Since the proof is standard, we direct the the reader to the proof of Lemma
6.1 in [6] adapted suitably in the context of P.

(3) We only need to verify that that there does not exist a thread for the generic
sequence in the forcing extension. Suppose for the sake of contradiction that
for some P-name Ċ for a club subset of λ and t ∈ P, t 
 “Ċ is a thread ”.
Since P is < λ-distributive, we can recursively build 〈ti ∈ P : i ∈ ω〉 and
〈ai ∈ [λ]<λ : i ∈ ω〉 such that
• t0 = t.
• for any i ∈ ω, ti+1 ≤P ti, ai is a proper initial segment of ai+1 and ai

is a closed subset of λ,
• for any i ≥ 1, γti > max(ai) > γti−1

,
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• for any i ∈ ω, ti+1 
 “ai @ Ċ and max(ai) ∈ lim(Ċ)” and for any
α < α′ ∈ κ, ti+1(γti+1 , α) 6= ti+1(γti+1 , α

′).
Let δ = supi∈ω(max(ai)) = supi∈ω(γti) and a =

⋃
i∈ω ai. Repeat the

argument in the proof of (1) to get t′ such that γt′ = δ, which is a lower
bound for 〈ti : i ∈ ω〉. By the property that for any i ∈ ω and α < α′ ∈ κ,
ti+1(γti+1 , α) 6= ti+1(γti+1 , α

′), we can further ensure that t′(δ, β) 6= a for

any β < κ. Since t′ 
 “ai @ Ċ” for all i ∈ ω, t′ 
 “a @ Ċ and δ ∈ lim(Ċ)”,
it follows that a = t′(δ, β) for some β < κ, which is a contradiction.

�

Suppose κ is a supercompact cardinal. Just like the first paragraph in the proof of
Theorem 5.3, in V Coll(ω1,<κ), we know that RC is indestructible under ω2-directed
closed forcings. If we follow by forcing with P�(λ,κ) in V Coll(ω1,<κ), then we will
have RC along with �(λ, ω2) in the final model.

Remark 5.14. As mentioned in the introduction, RC is known to refute �(λ, ω)
for regular λ ≥ ω2 ([36]). By Theorem 1.4.2 in [39] that �(λ, ω1) refutes the
(λ, ω2)-strong tree property and by Theorem 3.1 in [36] that RC + ¬CH implies
the (λ, ω2)-strong tree property for all λ ≥ ω2, it follows that RC + ¬CH implies
the failure of ¬�(λ, ω1) for all regular λ ≥ ω2. Notice that �(ω2, ω1) is a just a
consequence of CH.

Question 5.15. Is RC + CH +�(λ, ω1) consistent for regular λ > ω2?

The following observation imposes some restriction on models of RC + CH +
�(λ, ω1), if there are any.

Definition 5.16. We say a cardinal κ is generically strongly compact via a class of
forcings P if: for any λ ≥ κ, there exists P ∈ P such that for any generic G ⊂ P over
V , in V [G], there exist an elementary embedding j : V →M such that crit(j) = κ
and some Y ∈M such that j′′λ ⊂ Y with M |= |Y | < j(κ).

Observation 5.17. If ω2 is generically strongly compact via the class of proper
forcings, then �(λ, ω1) fails for all regular λ > ω2.

Proof. Suppose otherwise for the sake of contradiction. Let C̄ = 〈Cα,i : i < ω1, α ∈
lim(λ)〉 be a �(λ, ω1)-sequence in V for some regular λ > ω2. Let P be a proper
forcing such that whenever G ⊂ P is generic, in V [G], we can find an elementary
embedding j : V →M such that crit(j) = ω2 and some Y ∈M such that j′′λ ⊂ Y
with M |= |Y | < j(ω2). Let γ = sup(j′′λ). We may assume Y ⊂ γ. In M ,
let C ∈ j(C̄)(γ). So C ⊂ γ is a club. Consider A = j−1((lim(C)) ∩ Y ). A
is unbounded in λ since (lim(C)) ∩ Y ⊃ (lim(C)) ∩ j′′λ and the latter is an ω-
club. For each α ∈ A, as j(α) ∈ (lim(C)) ∩ Y , by coherence there exists iα < ω1

such that C ∩ j(α) = j(Cα,iα). Find A′ ⊂ A unbounded in λ and i < ω1 such
that for all α ∈ A′, iα = i. Then

⋃
α∈A′ Cα,i threads C̄ in V [G], since for any

α < β ∈ A′, j(Cβ,i) ∩ j(α) = (C ∩ j(β)) ∩ j(α) = C ∩ j(α) = j(Cα,i) so by
elementarity Cβ,i ∩α = Cα,i. However, by Corollary 2.22 in [17], no proper forcing
can introduce a thread to C̄. This is a contradiction. �

6. Rado’s Conjecture and polarized partition relations

In this section, we investigate the relationship between RC and certain polarized
partition relations concerning ω1 and ω2.
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Given an ideal I on X, we can consider the following equivalence relation: A ∼ B
iff A∆B ∈ I. Then P (X)/I is the poset that consists of all ∼-equivalent classes,
where p ≤ q iff there exists A ∈ p,B ∈ q such that A ⊂I B, namely A−B ∈ I.

Definition 6.1. Let I be an ideal on ω1. Then

• I is precipitous if whenever U ⊂ P (ω1)/I is a generic ultrafilter, then
Ult(V,U) is well-founded.
• I is presaturated if I is precipitous and forcing with P (ω1)/I preserves ωV2

as a cardinal.

Todorčević in [33] showed that Chang’s Conjecture (CC) implies the polarized

partition relation

(
ω2

ω1

)
→
(
ω
ω

)1,1

ω

. As CC is independent of the existence of a

saturated ideal on ω1 in general (see for example Proposition 8.52 in [12]), it is
a natural question whether the same polarized partition relation follows from the
existence of an ideal on ω1 with certain saturation property. It turns out that a
fairly weak saturation property suffices to get the partition relation.

Lemma 6.2. If there exists a presaturated ideal I on ω1, then

(
ω2

ω1

)
→
(
ω
ω

)1,1

ω

.

Proof. Let f : ω2 × ω1 → ω be the given coloring. Let G be the generic ultrafilter
for P (ω1)/I over V . Let j : V → M ' Ult(V,G) be the associated elementary
embedding defined in V [G]. We know by the assumption that crit(j) = ωV1 , ωM ∩
V [G] ⊂M and ωV2 = ω

V [G]
1 (see Proposition 4.8 in [12] for more details). In V [G],

A =def j
′′ωV2 − ωV1 ⊂ M is uncountable. Therefore in V [G] it is possible to find

k ∈ ω and uncountable A0 ⊂ A such that for all j(η) ∈ A0, j(f)(j(η), ωV1 ) = k.
Pick β0 ∈ ωV2 such that j(β0) = minA0. For each j(η) ∈ A0, in M , ∃ξ < j(ωV1 )
such that j(f)(j(β0), ξ) = j(f)(j(η), ξ) = k. By the elementarity of j, we know
that in V , ∃αη < ωV1 , f(β0, αη) = f(η, αη) = k. Since ωV1 is countable in V [G], by
the Pigeon Hole Principle, we can find some γ0 ∈ ωV1 and an uncountable A1 ⊂ A0

such that for all j(η) ∈ A1, αη = γ0.
Recursively, suppose for some n ∈ ω, we have defined γ0 < · · · < γn ∈ ωV1 , β0 <

· · · < βn ∈ ωV2 and uncountable An+1 ⊂ · · · ⊂ A0 such that j(βj) ∈ Aj for all
j ≤ n. Let βn+1 be such that j(βn+1) = minAn+1. For each j(η) ∈ An+1, we
know that M |= “∃αη < j(ωV1 ), αη > γn & j(f)(j(βj), αη) = k = j(f)(j(η), αη)
for all j ≤ n + 1”. By the elementarity of j, it is true that for each j(η) ∈ An+1,
we have V |= “∃αη < ωV1 , αη > γn & f(βj , αη) = k = f(η, αη) for all j ≤ n + 1”.
We can then define a map from An+1 to ωV1 in V [G], sending j(η) to αη. Since
ωV1 is countable in V [G], there exist γn+1 > γn and an uncountable An+2 ⊂ An+1

such that for all j(η) ∈ An+2, αη = γn+1. Repeat the process above, we define two
sequences 〈γn ∈ ωV1 : n ∈ ω〉 and 〈βn ∈ ωV2 : n ∈ ω〉 in V [G].

We have ensured that in V [G], j(f) � {j(βn) : n ∈ ω} × {γn : n ∈ ω} ≡ k.
Since ωM ∩ V [G] ⊂ M , we know that M |= “ there exist C ∈ [j(ωV2 )]ω and
D ∈ [j(ωV1 )]ω such that j(f) � C×D ≡ k”. By the elementarity of j, we know that
V |= “∃C ∈ [ωV2 ]ω,∃D ∈ [ωV1 ]ω such that f � C ×D ≡ k”.

�
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Remark 6.3. Essentially the same proof as in Lemma 6.2 with straightforward
modifications shows that the existence of a presaturated ideal on ω1 implies that(
ω2

ω1

)
→
(
k
ω1

)1,1

ω

for any k ∈ ω.

Corollary 6.4. RC implies

(
ω2

ω1

)
→
(
ω
ω

)1,1

ω

and

(
ω2

ω1

)
→
(
k
ω1

)1,1

ω

for any k ∈ ω.

Proof. There are two ways of seeing this. On one hand, RC implies Chang’s Con-
jecture, as shown by Todorčević in [34]. Then we can finish by the remark preceding
Lemma 6.2. On the other hand, RC implies the non-stationary ideal on ω1 is pre-
saturated, as shown by Feng in [9]. Then apply Lemma 6.2 and Remark 6.3. �

It is now natural to ask if we can prove anything stronger, in particular, the next

natural partition relation to consider is

(
ω2

ω1

)
→
(
ω
ω1

)1,1

ω

, which is a consequence

of the existence of an ideal I on ω1 that is (ℵ2,ℵ2,ℵ0)-saturated, namely for any
{Xα ∈ I+ : α < ω2}, there exists A ∈ [ω2]ℵ2 such that for any B ∈ [A]ℵ0 ,⋂
α∈B Xα ∈ I+ (see Laver [20] for more details). It turns out that RC does not

decide the truth of this statement.
We use and modify a little the idea of Prikry ([26]) to add an ω2-sequence of

ω1-partitions of ω1. In our final model, there exists a collection of sets 〈Aα,β ⊂ ω1 :
α < ω2, β < ω1〉 such that

• for each α < ω2, {Aα,β : β ∈ ω1} is a partition of ω1,
• |ω1 −

⋃
n∈ω Aαn,ξn | ≤ ℵ0 for any distinct 〈αn ∈ ω2 : n ∈ ω〉, and not

necessarily distinct 〈ξn ∈ ω1 : n ∈ ω〉.
Notation 6.5. Given a countable function S with its domain a subset of ω2×ω1, let
S0 ∈ [ω2]≤ω denote the projection of dom(S) to its first coordinate and S1 ∈ [ω1]≤ω

denote the projection of dom(S) to its second coordinate.

Pω2,ω1 consists of pairs (S,A) where S : ω2 × ω1 → ω1 is a countable partial
function such that S1 ∈ ω1 and A is a countable collection of countably infinite
partial functions from ω2 to ω1 closed under co-finite restrictions, namely for each
f ∈ A, if A =∗ dom(f), A ⊂ dom(f), then f � A ∈ A.

We say (S′,A′) ≤ (S,A) iff S′ ⊃ S and A′ ⊃ A and for all β ∈ S′1 − S1 and for
all f ∈ A, there exists α ∈ dom(f) such that (α, β) ∈ dom(S′) and S′(α, β) = f(α).

Remark 6.6. In general, for a regular cardinal κ, we can define Pκ,ω1
analogously

by simply replacing ω2 with κ.

It is easy to see that the ordering is transitive.

Claim 6.7. Pω2,ω1 is ℵ2-c.c. and countably closed assuming CH.

Proof. Countable closure is immediate. To see ℵ2-c.c, given a collection of condi-
tions pi = (Si,Ai) for i < ω2, we apply the ∆-System Lemma (see Lemma III.6.15
in [19] for a proof) to get A ∈ [ω2]ℵ2 such that

• (Si)1 is the same for all i ∈ A.
• dom(Si) forms a ∆-system with root r where Si � r are all the same for
i ∈ A.

Now any two conditions with indices A are easily seen to be compatible.
�
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Claim 6.8. For any α ∈ ω2 and any β ∈ ω1 and any p = (Sp,Ap) ∈ Pω2,ω1
, there

exists p′ ≤ p such that (α, β) ∈ dom(Sp′).

Proof. If (α, β) ∈ dom(Sp), then we take p′ to be p. Otherwise, if β ∈ (Sp)1,
then just add (α, β, 0) to Sp. If β 6∈ (Sp)1, then for each fn ∈ Ap, find distinct
αn ∈ dom(fn) different from α, then add (α, β′, 0) and (αn, β

′, fn(αn)) for n ∈ ω
to Sp for each β′ ≤ β such that β′ 6∈ (Sp)1.

�

Claim 6.9. For any infinite countable partial function f : ω2 → ω1 and any
p = (Sp,Ap) ∈ P, there exists p′ ≤ p such that f ∈ Ap′ .

Proof. Define p′ = (Sp′ ,Ap′) such that Sp′ = Sp and Ap′ is the closure of Ap ∪ {f}
under co-finite restrictions. It is easy to verify that p′ is as desired. �

Lemma 6.10 (Prikry, [26]). Assume V |= CH. Then in V Pω2,ω1 ,

(
ω2

ω1

)
6→
[
ω
ω1

]1,1
ω1

.

Namely, there exists f : ω2 × ω1 → ω1 such that for any A ∈ [ω2]ω and B ∈ [ω1]ω1 ,

f ′′A×B = ω1. This clearly implies

(
ω2

ω1

)
6→
(
ω
ω1

)1,1

ω

.

Definition 6.11. We say that ω2 is generically supercompact via countably closed
forcing if for any cardinal θ ≥ ω2 and any set x ∈ H(θ+), there exists a countably
closed forcing M such that whenever H ⊂M is generic over V , in V [H], there exists
an elementary embedding j : V →M where M is some transitive class such that

(1) crit(j) = ωV2 ,
(2) j′′x ∈M ,
(3) j(ωV2 ) > θ.

Remark 6.12. In Definition 6.11, instead of checking all x ∈ H(θ+), we will get an
equivalent definition even if we only check those x′s that are subsets of θ.

Lemma 6.13. If ω2 is generically supercompact via countably closed forcing, then
RC and WRP both hold.

Proof. To see that RC holds, fix some nonspecial tree T of size θ ≥ ω2. We may
assume T is of the form (θ,<T ). Fix M that witnesses the generic supercompactness
of ω2 with respect to the parameters θ and T . Let H ⊂ M be generic over V .
Consider Y = (j′′θ,<j(T )) ∈ M . In V [H], since (T,<T ) ' (j′′θ,<j(T )) and T
remains nonspecial by Claim 2.6, Y is nonspecial in V [H], hence in M . As M |=
“|j′′θ| = |θ| ≤ θ < j(ωV2 )”, by the elementarity of j, in V , it is true that there exists
a nonspecial subtree of T of size ℵ1.

To see that WRP holds, fix some regular λ ≥ ω2 and a stationary set S ⊂ [λ]ω.
Let M be the witness to the generic supercompactness of ω2 with parameters λω and
S. Let H ⊂M be generic over V and j : V →M be the corresponding elementary
embedding in V [H]. Consider Y = j′′S = {j(x) : x ∈ S} = {j′′x : x ∈ S} ∈ M .
Note j′′λ ∈ M since j′′λ = j′′

⋃
S =

⋃
j′′S. It is easy to see that in V [H], S is

stationary in [λ]ω iff j′′S is stationary in [j′′λ]ω. Since M is countably closed hence
proper, S remains a stationary subset of [λ]ω in V [H]. Hence in V [H], j′′S is a
stationary subset of [j′′λ]ω. Since j′′S, [j′′λ]ω ∈ M , we have that M |= “j′′S is a
stationary subset of [j′′λ]ω”. Also note that in M , we have that |j′′λ| = |λ| ≤ λ ≤
λω < j(ωV2 ), j′′S ⊂ j(S) and ω1 ⊂ j′′λ. Therefore, by the elementarity of j, it is
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true in V that there exists W ⊂ λ of size ℵ1 containing ω1 such that S ∩ [W ]ω is a
stationary subset of [W ]ω.

�

Lemma 6.14. Let κ be a supercompact cardinal. In V [G][H] where G is generic
for Coll(ω1, < κ) and H is generic for (Pω2,ω1)V [G] over V [G], WRP and RC both
hold.

Proof. We will show that in V [G][H], κ = ω2 is generically supercompact via
countably closed forcing. Then we can finish by Lemma 6.13.

First notice that Pω2,ω1 defined in V [G] is the same as Pκ,ω1 defined in V since
Coll(ω1, < κ) is countably closed. In V , fix θ ≥ κ and a (Coll(ω1, < κ) × Pκ,ω1)-
name ẋ for a subset of θ. Let λ > θ be some sufficiently large regular cardinal,
specifically larger than the cardinality of any nice (Coll(ω1, < κ)×Pκ,ω1

)-name of a
subset of θ. Fix j : V →M , an embedding witnessing κ is λ-supercompact, namely
crit(j) = κ, j(κ) > λ and λM ⊂ M . Observe that j(Coll(ω1, < κ) × Pκ,ω1) =
Coll(ω1, < j(κ))× Pj(κ),ω1

.
Let R ⊂ Coll(ω1, [κ,< j(κ)) be generic over V [G][H]. We can lift j to j :

V [G] → M [G][R] (we slightly abuse the notation by using the same j). Notice in
V [G], j � Pω2,ω1 : Pω2,ω1 → j(Pω2,ω1) is a complete embedding since V [G] |= CH

so by Claim 6.7, Pω2,ω1
is ℵ2-c.c. in V [G]. Therefore, as crit(j) = κ = (ω2)V [G],

each maximal antichain of Pω2,ω1
in V [G] is mapped to its pointwise image, which

is a maximal antichain of j(Pω2,ω1
). Notice also that j � Pω2,ω1

is just the identity
function on Pω2,ω1 .

Claim 6.15. j(Pω2,ω1
)/H is countably closed in V [G][R][H].

Proof of the Claim. Let P = (Pκ,ω1)V = (Pω2,ω1)V [G]. Fix a decreasing sequence
〈pn ∈ j(Pω2,ω1

)/H : n ∈ ω〉. We claim that q =
⋃
n pn ∈ j(P)/H, i.e. we show for

all h ∈ H, q is compatible with h. This clearly implies that q is a lower bound for
〈pn : n ∈ ω〉 in j(Pω2,ω1

)/H.
Note that for each n ∈ ω, Sqn must agree with SH =

⋃
{St : t ∈ H} which

is a total function on κ × ω1 → ω1. Fix h ∈ H. By the observation above, we
know Sh is consistent with Sq. By extending h and by Claim 6.8, we may assume
(Sh)1 > (Sq)1.

Fix β ∈ (Sh)1 − (Sq)1. For each f ∈ Aq, there exists n ∈ ω such that f ∈ Apn .
By the fact that h and pn are compatible, there exists α ∈ dom(f) such that
(α, β, f(α)) can be added to Sh. Since Apn is closed under co-finite restrictions,
we know in fact there are infinitely many such candidates. What is left to do is to
recursively build a condition h′ extending both h and q such that (Sh′)1 = (Sh)1
and Ah′ = Ah ∪ Aq.

Enumerate (Sh)1 − (Sq)1 as {βi : i ∈ ω}. Define 〈li : i ∈ ω〉 where each li is a
countable function from j(κ) × ω1 → ω1. For each i ∈ ω, for each f ∈ Aq, find
α = αf ∈ dom(f) such that αf 6= αg for any f 6= g ∈ Aq and li = {(αf , βi, f(αf )) :
f ∈ Aq} is compatible with Sh. Also li is necessarily compatible with Sq since
βi 6∈ (Sq)1. Notice for i 6= j ∈ ω, li is compatible with lj . Let lω =

⋃
i∈ω li∪Sh∪Sq.

It is easy to verify that h′ = (lω,Aq ∪ Ah) works.
�

Let L be generic for j(Pω2,ω1
)/H over V [G][R][H]. We can further lift j to

j : V [G][H] → M [G][R][H][L]. By the choice of λ, x = (ẋ)G×H ∈ M [G][H].
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Since j′′θ ∈ M , we have that j′′x ∈ M . Since Coll(ω1, [κ,< j(κ)) × j(Pω2,ω1
)/H

is countably closed in V [G][H] by Claim 6.15, we have found a countably closed
forcing that witnesses κ (recall that V [G][H] |= κ = ω2) is generically supercompact
with respect to the parameters θ and x.

�

Combining Lemma 6.10 and Lemma 6.14 we have the following.

Theorem 6.1. Let κ be a supercompact cardinal. Then there exists a forcing

extension in which κ = ω2, RC and WRP both hold, and

(
ω2

ω1

)
6→
(
ω
ω1

)1,1

ω

.
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[35] Vı́ctor Torres-Pérez and Liuzhen Wu. Strong Chang’s conjecture, semi-stationary reflection,

the strong tree property and two-cardinal square principles. Fund. Math., 236(3):247–262,

2017.
[36] Spencer Unger. Aronszajn trees and the successors of a singular cardinal. Arch. Math. Logic,

52(5-6):483–496, 2013.

[37] Matteo Viale and Christoph Weiß. On the consistency strength of the proper forcing axiom.
Adv. Math., 228(5):2672–2687, 2011.

[38] Christoph Weiß. Subtle and Ineffable Tree Properties. PhD Thesis.
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