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Abstract. We study the proof strength of various second order logic
principles that make statements about families of sets and functions.
Usually, families of sets or functions are represented in a uniform way by
a single object. In order to be able to go beyond the limitations imposed
by this approach, we introduce the concept of weakly represented families
of sets and functions. This allows us to study various types of families
in the context of reverse mathematics that have been studied in set
theory before. The results obtained witness that the concept of weakly
represented families is a useful and robust tool in reverse mathematics.

1 Introduction

The study of cardinal invariants of the continuum is an important and well-
studied branch of set-theory. A cardinal invariant is a cardinal that lies be-
tween ω1 and the continuum 2ℵ0 . Their study has been important both for
forcing theory and for the development of techniques for constructing certain
special sets of real numbers in ZFC.

In this work we try to formulate analogues of some of these cardinal invariants
in the context of models of second order arithmetic and reverse mathematics.
Consider a model of second order arithmetic (M,S,+, ·, 0, 1). The basic idea of
the present study is that if a suitably “nice” coding of a set of subsets of M
satisfying certain combinatorial properties is present in the second order part S
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of this model, then this corresponds to the set-theoretic statement that a certain
cardinal invariant of the continuum is small. The notion of “nice coding” that
we will use is that of weakly represented families, the definition of which will be
made precise in Definition 4.

In the next section we give a short introduction to reverse mathematics, which
will then allow us to formulate the second order arithmetical principles that we
wish to study in Section 3. In Section 4 we can then discuss the connections with
cardinal invariants.

We point out that connections between recursion theory and cardinal in-
variants have previously been studied by Rupprecht [37] as well as by Brendle,
Brooke-Taylor, Ng and Nies [3]; however, their work is only loosely related to
the present study.

2 Second order arithmetic and its base system

Second order arithmetic is the two-sorted strengthening of first order logic, that
is, it is obtained as follows: We introduce set variables in addition to the number
variables existing in first order logic. The function and relation symbols “·”,
“+”, “=” and “<” of the language of first order logic remain unchanged, and
are supplemented by a new relation symbol “∈”.

Adopting the convention of Simpson [39], we let L2 denote the language of
second order arithmetic. In the following, without explicit mention, we will let
capital letters denote set variables while lower-case letters will denote number
variables.

Definition 1 (Second order arithmetic). The axioms of second order arith-
metic consist of the universal closure of the following L2-formulas.

1. Basic Axioms:
◦ n+ 1 6= 0
◦ m+ 1 = n+ 1→ m = n
◦ m+ 0 = m
◦ m+ (n+ 1) = (m+ n) + 1
◦ m · 0 = 0
◦ m · (n+ 1) = (m · n) +m
◦ ¬(m < 0)
◦ m < n+ 1→ (m < n ∨m = n)
◦ ¬(n ∈ m)
◦ ¬(X ∈ n)
◦ ¬(X ∈ Y )

2. Induction Axiom: (0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X))→ ∀n (n ∈ X)

3. Comprehension Axioms:

∃X ∀n (n ∈ X ↔ ϕ(n)),

where ϕ(n) is any L2-formula in which X does not occur freely.
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In the context of reverse mathematics, in order to investigate the strength of
different axiom systems, we need to first agree on a base system, that is, on the
basic logical facts that we take for granted.

Definition 2 (Induction schemes). Given a set of formulae B, the B-induc-
tion scheme consists of all axioms of the form

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1))) → ∀n (ϕ(n))

for any formula ϕ(n) ∈ B in which X does not occur freely.

Definition 3 (Base system RCA0). RCA0 is the subsystem of second order
arithmetic consisting of the Basic Axioms as in Definition 1 (1), the Σ0

1-induction
scheme as in Definition 2, and the Comprehension Axioms as in Definition 1 (3)
restricted to the class of ∆0

1-formulas.

It is reasonable to use RCA0 as base system for the investigation of stronger axiom
systems in the context of reverse mathematics as it captures the effective aspects
of mathematics. Additionally, it was shown that a fair number of mathematical
theories can be developed relying solely on RCA0; for details, see Simpson [39].
In this article we will also follow this established pratice unless otherwise stated.

It is common to informally refer to different base systems as different logical
principles, and we will employ this expression frequently in the following.

3 Some second order combinatorial principles

A model of a set of second order arithmetical principles in general takes the
form M = (M,S,+, ·, 0, 1) where M is the first order part of the structure and
S is the second order part. If we decide not to require that all of the axioms
of Definiton 1 hold, but only a subset of them, such as RCA0, then it is not
guaranteed anymore that a model of such an axiom set has S = P(M); typically,
S will be much smaller. If M = ω, M is called an ω-model, and S is a Turing
ideal in this case.

The major textbook of reverse mathematics, Simpson [39], describes the five
major axiom systems of reverse mathematics that cover many branches of mathe-
matics, such as algebra, analysis, etc. Another recent textbook by Hirschfeldt [16]
puts a particular focus on the role of Ramsey theory for reverse mathematics.

Before we can define the principles that we will study in this article, we need
the following definitions.

Definition 4 (Weakly represented partial functions). A partial function f
is said to be weakly represented by a set A if, for every x and y, there exists a
z with 〈x, y, z〉 ∈ A iff

1. x ∈ dom(f) ∧ f(x) = y and (representation)
2. ∀x, y, y′, z, z′ [(〈x, y, z〉 ∈ A ∧ 〈x, y′, z′〉 ∈ A) → y = y′] and (consistency)
3. ∀x, y, y′, z, z′ [(〈x, y, z〉 ∈ A ∧ z < z′) → 〈x, y, z′〉 ∈ A] and (monotonicity)
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4. ∃z 〈x, y, z〉 ∈ A → ∀t < x ∃y′ ∃z′ 〈t, y′, z′〉 ∈ A. (downward closure)

Definition 5 (Weakly represented families of functions). Let A ∈ S be
given and write Ae = {n : 〈e, n〉 ∈ A}, e ∈ M , for its rows. For each e, write fe
for the (possibly partial) function weakly represented by Ae.

Then a set of total functions F is said to be a weakly represented family of
functions represented by A if we have that F contains exactly those fe, e ∈M ,
that are total.

Note that all functions in a weakly represented family are by definition total.
Rows Ae of A that do not represent such a function are ignored.

Definition 6 (Weakly represented families of sets). A set of sets S is said
to be a weakly represented family of sets if their corresponding characteristic
functions form a weakly represented family of functions.

Definition 7. F is said to be a uniform family of sets represented by A if

F = {Ae : e ∈M}

where Ae = {n : 〈e, n〉 ∈ A}, e ∈M .

Remark 8. It is easy to see that every uniform family of sets represented by
some A is also a weakly represented family of sets represented by some B where
A =T B.

One motivation for introducing weakly represented families is that the set of all
partial recursive functions is a weakly represented family of functions. Similarly,
it can easily be seen that in the classical setting the collection of all recursive sets
is a weakly represented family of sets. This is because the class of characteristic
functions of recursive sets

F = {ϕe : ϕe is total ∧ range(ϕe) ⊆ {0, 1}}

can be weakly represented by a recursive set in any model of RCA0.
These are examples of how the notion of weakly represented families enables

us to talk about more and larger sets of functions; and this new ability then
allows us to define new reverse mathematics principles, as we will now see.

Friedberg [13] constructed a maximal set, that is, an r.e. set A with infinite
complement such that any other r.e. set B either contains almost all or almost
none of the elements of the complement of A. As it turned out, the property of
the complement being either almost contained in or being almost disjoint from
every recursively enumerable set plays an important role in recursion theory, and
thus it was given a name of its own, cohesiveness. This is a special case of the
following more general definition.

Definition 9 (Cohesive set). For a set A ⊆M , write Ā for M \A. Then given
a set of sets F ⊆ {0, 1}M , a set G is said to be F-cohesive if for any A ∈ F ,
either G ⊆∗ A or G ⊆∗ Ā. If F is the collection of all recursive sets, then G is
called r-cohesive.
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Statement 10 (Cohesion Principle COH). For every uniform family F of
sets, there exists an F-cohesive set.

While recursion theorists were originally interested in the degree-theoretic prop-
erties of cohesiveness, it turned out that it was relevant in reverse mathematics
as well: Mileti [31] showed that Ramsey’s Theorem for Pairs implies COH; and
Cholak, Jockusch and Slaman [5] showed that Ramsey’s Theorem for Pairs is
equivalent to Stable Ramsey’s Theorem for Pairs together with COH. For a
detailed account of the role that COH has played in reverse mathematics, see
Hirschfeldt [16].

In this article we will also study COHW, a variant of COH that takes advan-
tage of the new possibilities introduced with the notion of weakly represented
families of sets.

Statement 11 (Cohesion for weakly represented families COHW). For
every weakly represented family F of sets, there exists an F-cohesive set.

By Remark 8, COHW trivially implies COH. But we will show that the other
implication does not hold, not even over ω-models.

Statement 12 (Domination Principle DOM). Given any weakly represented
family of functions F , there exists a function g such that for every f ∈ F there
is some b ∈M such that g(x) > f(x) for all x > b.

In a follow-up study to the present article, Hölzl, Jain and Stephan [19] establish
further properties of DOM, including the following.

– Over RCA0, BΣ2 + DOM ` IΣ2;
– Over RCA0 + DOM, the index set E of a weakly represented family is limit-

recursive, that is, there is a binary {0, 1}-valued function g such that for
all e ∈M , if e ∈ E then ∃s∀t > s [g(e, t) = 1] else ∃s∀t > s [g(e, t) = 0].
(Here, for a weakly represented family F of functions represented by A, we
call the set of e ∈ M for which fe, as in Definition 5, is total, the index set
of F .)

We will show that over RCA0 and BΣ2, DOM implies COH and COHW.

Statement 13 (Hyperimmunity Principle HI). Given any weakly repre-
sented family of functions F , there exits a function g such that for each f ∈ F
and each b ∈M we have g(x) > f(x) for some x > b.

Note that HI is weaker than DOM. Hirschfeldt, Shore and Slaman [18] define
the principle OPT, which they show [18, Theorem 5.7] to be equivalent to the
statement that for every f ∈ S there is a g ∈ S such that f does not compute a
function majorising g; thus this principle is equivalent to HI.

For f, g ∈MM we write f <∗ g to express that {n ∈M : g(n) ≤ f(n)} is
finite. The symbol “≤∗” is defined accordingly. A subset F ⊆ MM is called
bounded if there exists g ∈ MM such that for all f ∈ F we have f <∗ g.
Otherwise F is said to be unbounded.
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Statement 14 (Meeting Principle MEET). Given any weakly represented
family of functions F , there exits a function g such that for each f ∈ F the set
{n ∈M : f(n) = g(n)} is infinite.

We will show that HI and MEET are equivalent.

Definition 15. We say that a function g avoids a function f if

{n ∈M : f(n) = g(n)}

is finite.

Statement 16 (Avoidance Principle AVOID). Given any weakly represented
family of functions F , there exits a function g avoiding all f ∈ F .

Two subsets A and B of M are said to be almost disjoint if A ∩ B is finite.
A set F ⊆ {0, 1}M is called almost disjoint if any two distinct elements of F
are almost disjoint. A set F ⊆ {0, 1}M is called maximal almost disjoint if it is
infinite and almost disjoint and is not properly contained in any larger almost
disjoint set. Formalising that a family is infinite is somewhat tricky; we use the
following approach.

Definition 17. We call a weakly represented family F finite if there is a weakly
represented family G with finite index set such that F = G . Otherwise we call
F infinite.

Statement 18 (Maximal Almost Disjoint Family Principle MAD). There
exists a weakly represented family F of infinite sets such that the following three
conditions hold:

– F is infinite;

– if A,B ∈ F are pairwise different, then A ∩B is finite;

– for every infinite set C ∈ S there is a D ∈ F such that C ∩D is infinite.

For a set A ⊆M , let us temporarily write A0 for A and A1 for Ā. A family F ⊆
P(M) is said to be independent if for any n ≥ 1, any collection {A0, . . . , An−1} ⊆
F , and any string σ ∈ 2n, the set

⋂
i<nA

σ(i)
i is infinite. A maximal independent

family is an independent family that can not be extended to a strictly larger
independent family.

Statement 19 (Maximal Independent Family Principle MIND). There
exists a weakly represented family of infinite sets that is maximal independent.

Statement 20 (Biimmunity Principle BI). For every weakly represented
family F of infinite sets there is a set B ∈ S such that there is no set A ∈ F
with A ⊆ B or A ⊆ B.
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4 Cardinal invariants

We now discuss the nine cardinal invariants of the continuum that are considered
in this paper, the most basic being the cardinality of the continuum.

Definition 21. c = 2ℵ0 = |R|.

Recall that the Continuum Hypothesis CH is the statement that c = ℵ1. The
analogue of CH in a model M = (M,S, ·,+, 0, 1) is the statement that there is
a weakly represented family of sets represented by A ∈ S such that the charac-
teristic function of every element of S appears in A. In other words, this states
that there is a set in S which “encodes in a nice way” all the subsets of M that
can be “seen by” M. The simplest example of this is the case where S consists
exactly of the recursive sets.

Recall the partial order 〈MM , <∗〉 defined in the previous section. We as-
sume that ZFC is our base theory when talking about cardinal invariants of the
continuum. Therefore, we only consider the restriction of this partial order to
ωω in this section. So for f, g ∈ ωω, g <∗ f means that {n ∈ ω : g(n) ≥ f(n)} is
finite; and “finite” here does not mean finite in the sense of some specific model
of second order arithmetic, but finite as defined within ZFC. Recall that a family
F ⊆ ωω is unbounded if there is no g ∈ ωω such that ∀f ∈ F [f <∗ g] and F
is dominating if for all g ∈ ωω there exists an f ∈ F with g <∗ f . It is clear
that every dominating set is unbounded. Based on these definitions, we define
the following two cardinal invariants.

Definition 22. b = min{|F| : F ⊆ ωω ∧ F is unbounded}
d = min{|F| : F ⊆ ωω ∧ F is dominating}

It is easy to prove that ℵ1 ≤ cf(b) = b ≤ cf(d) ≤ d ≤ c, where cf(κ) denotes the
cofinality of the cardinal κ. It is also a classical theorem of Hechler [14] that these
are the only restrictions that are provable in ZFC. In keeping with the intuition
described in the introduction, in a second order modelM = (M,S, ·,+, 0, 1), the
statement b = ℵ1 should correspond to the statement that there exists a set in S
which “nicely encodes” an unbounded family of functions from the point of view
of M. In other words, b = ℵ1 should correspond to the statement that there
is a weakly represented family of functions F represented by some A ∈ S such
that no function in S dominates, in the sense of the partial order 〈MM , <∗〉, all
the elements of F . This is the negation of the principle DOM. So DOM is the
analogue of b > ℵ1. Similarly HI corresponds to d > ℵ1.

Another important pair of cardinals come from the notion of splitting. Recall
that for a set X and a cardinal κ, [X]

κ
= {A ⊆ X : |A| = κ}, in particular

[ω]
ω

denotes the set of infinite subsets of ω. Let A,B ⊆ ω. We say that A splits
B if both B∩A and B∩Ā are infinite. A set F ⊆ P(ω) is called a splitting family
if ∀B ∈ [ω]

ω ∃A ∈ F [A splits B]. A set A ⊆ ω is said to reap a family F ⊆ P(ω)
if for all B ∈ F we have that A splits B. A family F ⊆ [ω]

ω
is unreaped if there is

no A ∈ P(ω) which reaps F . The following cardinals correspond to the notions
of splitting and reaping.
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Definition 23. s = min{|F| : F ⊆ P(ω) ∧ F is a splitting family}
r = min{|F| : F ⊆ [ω]

ω ∧ F is an unreaped family}

It is not difficut to prove that s ≤ d, and this proof dualizes to show that b ≤ r
(see Blass [2]). Blass and Shelah constructed a model with ℵ1 = r < s = ℵ2
(see Bartoszyński and Judah [1, Section 7.4.D]) and ℵ1 = s < b = ℵ2 holds in
the Laver model (see Bartoszyński and Judah [1, Section 7.3.D]). The notion of
a cohesive set in recursion theory is related to the notion of splitting. To say
that G is F-cohesive is the same as saying that G is not split by any member
of F . So the principle COHW corresponds to the statement s > ℵ1 because
it says that no weakly represented family F ∈ S has the property that every
A ∈ S is split by some member of F — in other words, S does not “nicely
encode” any splitting family in the sense ofM. The principle COH is related to
COHW and satisfies COHW ` COH properly; there is no direct analogue of COH
in set theory. The principle BI corresponds to the statement r > ℵ1 and the
reverse mathematical analogue of the ZFC theorem s ≤ d is the statement that
COHW implies HI. However in parallel with Blass and Shelah’s result that the
statement ℵ1 = b = r < s = ℵ2 is consistent with ZFC, it holds that COHW
does not imply DOM; the full result has no analogue as COHW implies HI and
HI implies BI. Furthermore, the implication DOM ` HI has the analogue b ≤ d
in ZFC. In both cases, the inverse implication does not hold.

The next group of cardinals that we define stem from the context of cate-
goricity. Recall that a set X ⊆ R is called nowhere dense if the interior of its
closure is empty. A subset of R is meager if it is the union of countably many
nowhere dense sets. We define the following cardinals.

Definition 24. cov(C) = min

{
|F| : F consists of meager subsets of R

and
⋃
F = R

}
non(C) = min {|A| : A is a non-meager subset of R}

Here C stands for category. These topologically defined cardinals have purely
combinatorial characterizations, as the following theorem shows.

Theorem 25 (Miller[32]).

1. cov(C) is the minimal cardinal κ such that there exists an F ⊆ ωω with
|F| = κ and such that for all g ∈ ωω there is an f ∈ F such that

{n ∈ ω : f(n) = g(n)}

is finite.
2. non(C) is the minimal cardinal κ such that there exists an F ⊆ ωω with
|F| = κ and such that for all g ∈ ωω there is an f ∈ F such that

{n ∈ ω : g(n) = f(n)}

is infinite.
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We remind the reader that in the above theorem “finite” and “infinite” are not
to be understood in the sense of M, but as those terms as defined within ZFC.

The above theorem allows us to formulate analogues of these topological
invariants in any model of second order arithmetic. For cov(C) to be “small”
in a second order model M = (M,S, ·,+, 0, 1), we would like to have a weakly
represented family of functions F ∈ S with the property that for any function
g ∈ S, {n ∈ M : f(n) = g(n)} is finite in the sense of M. The principle MEET
says that no such weakly represented family exists. Thus MEET corresponds to
the statement that cov(C) > ℵ1. Similarly, AVOID is the analogue of non(C) > ℵ1.
As it is easy to prove in ZFC that cov(C) ≤ d, one would expect MEET to imply
HI, and indeed this is easy to check. But somewhat unexpectedly we will prove
that MEET and HI are equivalent — at least for ω-models. This contrasts with the
fact that cov(C) = ℵ1 < ℵ2 = b = d holds in the Laver model (see Bartoszyński
and Judah [1, Section 7.3.D]). As a result, in the classical ZFC context, we do not
even have that DOM implies MEET. Dualizing the equivalence of MEET and HI
one would expect AVOID to be equivalent to DOM. Indeed, DOM implies AVOID
by definition; however, we show in Theorem 41 that AVOID does not imply HI,
and therefore not DOM. Also it is consistent that b = ℵ1 < ℵ2 = cov(C); in fact
it is folklore that this holds in the Cohen model. This is reflected by the fact
that MEET does not imply DOM, which follows immediately from Theorem 38.
Next, regarding non(C), it is easy to see by Theorem 25 (2), that b ≤ non(C)
holds in ZFC, and, accordingly, DOM implies AVOID. It is also easy to prove
in ZFC that s ≤ non(C). This is only partially true in the reverse mathematical
context. Namely, we will prove that COHW implies AVOID in ω-models. However
this is not true in all non-ω-models, as we will show. Finally, in the classical ZFC
context, d and non(C) are independent, meaning that while it is consistent to
have ℵ1 = d < non(C) = ℵ2 (see Bartoszyński and Judah [1, Section 7.3.B]) it is
also consistent to have ℵ1 = non(C) < d = ℵ2 (see Bartoszyński and Judah [1,
Section 7.3.E]). This is reflected by the independence of AVOID and MEET, even
in ω-models.

We also considered cardinal invariants associated with almost disjointness
and independence. In the ZFC context, A,B ⊆ ω are said to be almost disjoint
if |A ∩B| < ℵ0. A family A ⊆ [ω]

ω
is almost disjoint if its members are pairwise

almost disjoint. An infinite almost disjoint family A is said to be maximal almost
disjoint if it is not properly contained in any larger almost disjoint family. Any
infinite almost disjoint set can be extended to a maximal almost disjoint set by
Zorn’s Lemma.

Similarly a family F ⊂ [ω]
ω

is called independent if for each n ≥ 1, each

collection {A0, . . . , An−1} ⊂ F , and each string σ ∈ 2n,
∣∣∣⋂i<nAσ(i)i

∣∣∣ = ℵ0, where

A0
i is Ai and A1

i is Āi. A maximal independent family is an independent family
F ⊂ [ω]

ω
which is not properly contained in any larger independent family.

Zorn’s Lemma also guarantees the existence of maximal independent families.

Observe that a second order modelM = (M,S, ·,+, 0, 1) need not satisfy any
principle akin to Zorn’s lemma. Therefore there need not be any maximal almost
disjoint or maximal independent families in S, weakly represented or otherwise.
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Definition 26. a = min{|A | : A ⊆ [ω]
ω

is a maximal almost disjoint family}
i = min{|A | : A ⊆ [ω]

ω
is a maximal independent family}

The principle MAD says that there is a weakly respresented maximal almost
disjoint family and so it corresponds to a = ℵ1. Similarly MIND corresponds
to i = ℵ1.

We prove that, at least for ω-models, MAD holds iff DOM fails. Since in ZFC
the inequality b ≤ a holds by folklore, it does not come as a surprise that
DOM implies ¬MAD. However, ℵ1 = b < a = ℵ2 is consistent by a theorem of
Shelah [38], so the fact that ¬DOM implies MAD is unexpected.

Similarly, we prove that, at least for ω-models, MIND holds iff BI fails. One
can easily prove in ZFC that r ≤ i and so the direction from BI to ¬MIND is
unsurprising. But once again the consistency of r = ℵ1 < ℵ2 = i was proved by
Blass and Shelah (see Bartoszyński and Judah [1, Section 7.4.D]), making the
implication from ¬BI to MIND unexpected.

5 Cohesion Principles

In the following we will introduce definitions needed for this paper; for the
recursion-theoretic background, the reader is referred to the textbooks of Downey
and Hirschfeldt [10], Nies [34], Odifreddi [35,36], Simpson [39] and Soare [41].

Definition 27. Let A and B be sets. A is PA-complete with respect to B (writ-
ten as A � B) if for every partial B-recursive {0, 1}-valued function f , there
exists an A-recursive total extension g of f . In this definition we can replace sets
by degrees in the canonical way.

Definition 28. Let A and B be sets. A is hyperimmune-free with respect to B
if every function recursive in A⊕B is dominated by some B-recursive function.

Theorem 29. Over RCA0, COH does not imply COHW. This even holds for
ω-models.

To proof the non-implication for ω-models, we need the following lemmata and
theorem. The first lemma establishes a relationship between two 1-generic sets
and their join. It is the genericity analogue of van Lambalgen’s Theorem 40.

Lemma 30 (Yu [43]). The following are equivalent for n ≥ 1.

1. A⊕B is n-generic;
2. A is n-generic and B is n-generic relative to A;
3. B is n-generic and A is n-generic relative to B.

The following theorem is a reformulation and slight variation of a result of
Jockusch and Stephan [24, Theorem 2.1]; the proof is largely identical and omit-
ted here.
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Theorem 31. Let F be a uniform family represented by A. If B′ � A′ then
there is a B-recursive F-cohesive set.

Lemma 32. There is a sequence of sets (Ai : i ∈ ω) such that, for every i ∈ ω,
Ai is 1-generic and not high, Ai+1 ≥T Ai and A′i+1 � A′i.

Proof. Let B0 = ∅′. If, for some i ∈ ω, Bi with B′i ≤T ∅′′ has been inductively
defined, then we compute relative to Bi a tree T each path of which is a complete
extension of PA relative to Bi, see Odifreddi [35]. Then by Jockusch and Soare’s
Low Basis Theorem [23] relative to Bi we have a path Bi+1 ∈ [T ] such that
Bi+1 � Bi, Bi+1 ≥T Bi and such that Bi+1 is low relative to Bi, that is,
B′i+1 ≤T B

′
i+1 ⊕Bi ≤T B

′
i ≤T ∅′′.

It is well-known that the sets provided by Friedberg’s Jump Inversion The-
orem [12] can be assumed to be 1-generic; see, for example, Stephan [42, The-
orem 5.4]. By applying this result to B0 we obtain a 1-generic set A0 such
that A′0 = B0 (that is, A0 is low). With Ai defined for some i ∈ ω, and using
that Bi+1 ≥T Bi = A′i, we can apply the Jump Inversion Theorem relative to Ai
to the set Bi+1 to obtain a set Ci+1 with C ′i+1 = Bi+1 and Ci+1 being 1-generic
relative to Ai. We let Ai+1 = Ci+1 ⊕Ai and by Lemma 30 and using that Ai is
1-generic by induction hypothesis we again have that Ai+1 is 1-generic.

Note that for all i ∈ ω we have A′′i = B′i ≤T ∅′′ and thus A′i <T ∅′′. It follows
that Ai is not high. ut

Now let S = {A ⊆ ω : A ≤T A0 ⊕ . . . ⊕ An for some n ∈ ω}, where the
sets Ai, i ∈ ω, are as in Lemma 32. The following lemmata show that the ω-model
M = (ω, S,+, ·, 0, 1) satisfies COH and RCA0, but not COHW.

Lemma 33. M |= COH + RCA0

Proof. First note that S is closed under Turing reducibility and join, thusM is
a model of RCA0.

To see thatM is also a model of COH, let a uniform familiy F represented by
A ≤T A0 ⊕ . . .⊕An =T An for large enough n be given. Then, by construction,
A′n+1 � A′n, and we can apply Theorem 31 with An+1 substituted for B and
An substituted for A to see that there is an An+1-recursive F-cohesive set. ut

Corollary 34. M 6|= COHW

Proof. By Jockusch and Stephan [24, Theorem 2.9] each cohesive 1-generic de-
gree is high. But by Lemma 32, no set in S is high, therefore none of the 1-generic
sets Ai, i ∈ ω, is cohesive. Since by Jockusch [22] the cohesive degrees are up-
wards closed this implies that no set in S is cohesive. Now by Jockusch and
Stephan [24, Corollary 2.4], the cohesive and the r-cohesive degrees coincide, so
no set in S is r-cohesive. In particular, if F is the weakly represented family con-
sisting of all recursive sets, there exists no F-cohesive set in S. So COHW fails
to hold. ut

This concludes the proof of Theorem 29, separating COH and COHW over RCA0.
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Theorem 35. COH does not imply AVOID. This even holds for ω-models.

We use the following well-known lemma.

Lemma 36 (Demuth and Kučera [9]). No 1-generic set computes a diago-
nally non-recursive function.

Proof (Theorem 35). We again use the above ω-model M with second order
part S. Observe that S is a downward closure of non-high 1-generic sets. In
particular, by Lemma 36, all sets in S are neither diagonally non-recursive nor
high. By Kjos-Hanssen, Merkle, and Stephan [25, Theorem 5.1 (¬(3)⇒ ¬(1))],
this implies that no A ∈ S computes a function avoiding all total recursive
functions. As the set of all total recursive functions is a weakly represented
family, this contradicts AVOID. ut

The next theorem illustrates once more the difference in reverse mathematics
strength between COH and COHW.

Theorem 37. COHW ` AVOID for ω-models.

More precisely, given any r-cohesive set G, one can recursively produce a
total function g such that {n ∈ ω : g(n) = ϕe(n)} is finite for every total recursive
function ϕe.

Proof. Let F be the collection of all total recursive functions. We will show
that there exists a function g ∈ S such that for every f ∈ F we have that
{n ∈ ω : f(n) = g(n)} is finite. Then the general case follows by relativization.

Let F ′ be the collection of all recursive sets. COHW ensures the existence
of an F ′-cohesive set, say G. If G is high, then by Martin [30], there exists a
function g recursive in G that dominates every total recursive function, and we
are done.

If G is not high, then by Jockusch and Stephan [24] there exists an effectively
immune set A recursive in G. Here we call A effectively immune if there is a
recursive function p such that for any r.e. set We we have We ⊆ A→ |We| < p(e).
Fix this p and assume without loss of generality that it is increasing.

Let f be the total recursive function such that

Wf(e,i) =

{
Wϕi(e) if ϕi(e)↓,
∅ otherwise.

Let g be the total recursive function such that Wg(e) consists of the first

p(max{f(i, e) : i ≤ e}) + 1

elements of A.

Claim. For all i ≤ e we have g(e) 6= ϕi(e).
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Proof. Suppose otherwise, then g(e) = ϕi(e) for some i ≤ e. Then ϕi(e)↓ and
Wf(e,i) = Wϕi(e) = Wg(e) ⊆ A, so

p(f(e, i)) < p(max{f(e, j) : j ≤ e}) + 1 = |Wg(e)| = |Wf(e,i)| < p(f(e, i)),

which is a contradiction. 3

Then g is the required function. ut

Given that the previous proof was carried out in the standard model, it is natural
to ask how COHW interacts with AVOID in non-standard models.

6 The Meeting and Hyperimmunity Principles

In this section we investigate the principles MEET and HI and their relations to
each other as well as to other principles.

Theorem 38. Over RCA0, MEET and HI are equivalent.

Proof. MEET ` HI: If g is as in the statement of MEET, then HI holds with g+1
substituted for g.

HI ` MEET: Let an arbitrary model M = (M,S,+, ·, 0, 1) be given. Let F be a
weakly represented family represented by A and let Ae and fe, for e ∈M , be as
in Definition 5. Define a function f̃e via x 7→ nx for x ∈M , where nx is the first
number of the form 〈〈e, x〉, y, z〉 inside Ae, if it exists; note that y = fe(〈e, x〉)
whenever nx exists. Then f̃e is total iff fe is total.

Note that the set F ′ = {f̃e : f̃e is total} is again a weakly represented family.

By applying HI to F ′ we obtain a function g̃ such that for each total f̃e there
are infinitely many x with g̃(x) > f̃e(x).

Then define g(〈e, x〉) as follows: If there is a number m of the form 〈〈e, x〉, y, z〉
in Ae such that m < g̃(x), then let g(〈e, x〉) = y, else g(〈e, x〉) = 0. The function g

is in S and is total; furthermore, whenever g̃(x) > f̃e(x) then we have g(〈e, x〉) =
fe(〈e, x〉) and thus for all total fe there are infinitely many n with g(n) = f(n).
This implies MEET. ut

Our next result shows that AVOID is incomparable with HI. As essential tools
we employ the following two well-known results; to see the first, apply the
hyperimmune-free basis theorem of Jockusch and Soare [23] to the complement
of the first component of the universal Martin-Löf test.

Lemma 39. There exists a hyperimmune-free Martin-Löf random set.

Theorem 40 (van Lambalgen [29]). The following are equivalent.

1. A⊕B is n-random.
2. A is n-random and B is n-random relative to A.
3. B is n-random and A is n-random relative to B.
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Theorem 41. AVOID does not imply HI. This even holds for ω-models.

Proof. Let A be a hyperimmune-free Martin-Löf random, as in Lemma 39.
For i ∈ ω, let Ai = {x : 〈i, x〉 ∈ A}. Then by Theorem 40, for every i ∈ ω, Ai+1 is
Martin-Löf random relative to A0⊕ . . .⊕Ai. Fix the modelM = (ω, S,+, ·, 0, 1)
with second order part S = {B ⊆ ω : B ≤T A0 ⊕ . . .⊕Ai for some i ∈ ω}.

Let a weakly represented family F represented by B ≤T A0 ⊕ . . .⊕ Ai with
i ∈ ω large enough be given. Fix a computably bijective map ν : {0, 1}∗ → ω,
and let g be the function n 7→ ν(Ai+1(0) . . . Ai+1(n)). Fix any f ∈ F ; triv-
ially, f ≤T B. Assume that g does not avoid f . Then there are infinitely many n
such that the Kolmogorov complexity relative to B of Ai+1(0) . . . Ai+1(n) is
less than 2 log(n), which contradicts that An+1 is Martin-Löf random relative
to A0 ⊕ . . .⊕Ai. Therefore g ≤T Ai+1 ∈ S is a function as required by AVOID.

On the other hand, for every C ∈ S we have C ≤T A, and since A is
hyperimmune-free, C is hyperimmune-free as well. As C was arbitrary, this im-
plies that M does not satisfy HI. ut

We now turn to the other direction.

Theorem 42. HI does not imply AVOID.

Proof. We again use the ω-model M from the proof of Theorem 35. As shown
there, M does not satisfy AVOID.

To see thatM satisfies HI, let a weakly represented family F represented by
A ≤T An be given. As An+1 is by construction 1-generic relative to An, it is
in particular hyperimmune relative to A. Then it computes a function g that is
infinitely often larger than any function f ≤T A, and in particular g is for F as
required by HI. ut

A further interesting result is the following, which is in line with the fact from
recursion theory that the Turing degrees of cohesive sets are hyperimmune.

Theorem 43. COHW implies HI.

Proof. Let F be a weakly represented family of functions represented by A, let
fe be as in Definition 5 and let E = {e : fe is total}.

Define for each e ∈ M inductively a function ge such that ge(0) = 1 and
ge(x+ 1) = max{fe(x′) + 1: x′ ≤ ge(x) + 1}. Next define for each e ∈M the set
Be = {y : ∃x [ge(2x) ≤ y < ge(2x+ 1)]}. It is easy to see that F ′ = {Be : e ∈ E}
is a weakly represented family of sets.

By COHW there is an F ′-cohesive set C ∈ S. Then let h be the principal func-
tion of C; that is, h is strictly monotonically increasing and C = {h(0), h(1), . . .}.
Then h ∈ S as well. Also note that h(n) ≥ n holds trivially for all n ∈M .

Fix e ∈ E. Firstly, consider the case that there is some b ∈ M such that
C ∩ {x : x ≥ b} ⊆ Be. Then C ∩ {y : ge(2x+ 1) ≤ y < ge(2x+ 2)} is empty for
almost all x. We claim that h(ge(2x+ 1)) > fe(ge(2x+ 1)) for sufficiently large
numbers x. To see this observe that h(ge(2x + 1)) ∈ C and thus in Be, which
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implies h(ge(2x + 1)) ≥ ge(2x + 2) as the smallest element of Be larger than
ge(2x+ 1) is ge(2x+ 2). Then, by definition of ge,

h(ge(2x+ 1)) ≥ ge(2x+ 2)
= max{fe(x′) + 1: x′ ≤ ge(2x+ 1) + 1}
> fe(ge(2x+ 1)).

Secondly, consider the case that there is some b ∈ M with the property that
(C ∩ {x : x ≥ b}) ∩Be = ∅. Then C ∩ {y : ge(2x) ≤ y < ge(2x+ 1)} is empty for
almost all x. For similar reasons as in the previous case, h(ge(2x)) > fe(ge(2x))
for almost all x.

Due to C’s F ′-cohesiveness, one of the two cases must occur. As a result, the
set {y ∈ M : h(y) > fe(y)} is guaranteed to be infinite. Since e ∈ E was chosen
arbitrarily, the requirements of HI with regards to F are satisfied; furthermore,
since F was chosen arbitrarily as well, HI holds in general. ut

7 The Domination Principle

In this section we show that over RCA0 + BΣ2, the principle DOM implies COH
and COHW. It is an open question whether the assumption BΣ2 is needed.

Theorem 44. Over RCA0 + BΣ2, DOM implies COH.

Proof. Hölzl, Jain and Stephan [19, Theorem 20] showed that over RCA0 +BΣ2,
DOM implies IΣ2. Thus we can assume that IΣ2 holds for the purposes of this
proof.

LetM = (M,S,+, ·, 0, 1) be a model of DOM and let F be a uniform family
of sets represented by A ∈ S. For e ∈ M let Ae be as in Definition 7 and let
f̃e,x(y) be the first z > y with ∀d ≤ e [Ad(z) = Ad(x)] and let F̃ be the weakly

represented family of those f̃e,x which are total. By DOM there is a function g ∈ S
which dominates all members of F̃ . Define an infinite set G = {x0, x1, . . .} ∈ S
as follows:

– x0 = 0 and
– Let Xn = {xn + 1, xn + 2, . . . , xn + g(xn)} and define xn+1 as the minimal
y ∈ Xn such that

A0(y)A1(y) . . . Axn(y) = max{A0(z)A1(z) . . . Axn(z) : z ∈ Xn},

where the maximum is with respect to ≤lex, the lexigraphic ordering on
strings.

Let Ψ(e, x) be the statement

x ∈ G ∧ ∀y ≥ x [y ∈ G→ A0(y)A1(y) . . . Ae−1(y) = A0(x)A1(x) . . . Ae−1(x)].

Claim. For all e, ∃x (Ψ(e, x)) holds.
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Proof. As ∃x Ψ(e, x) is a Σ0
2-statement, using IΣ2, we can prove it by induction

over e ∈M .
The statement Ψ(0, x) holds vacuously for all x ∈ G. So assume by induction

that for a given e ∈ M , Ψ(e, x′) is true for some x′ ∈ G. We distinguish two
cases:

Case 1. G ∩ Ae is finite. Then there exists an x′′ ≥ x′ with x′′ ∈ G and
x′′ > max(Ae ∩G). Then for all y ∈ G with y ≥ x′′, we have Ae(y) = Ae(x

′′) = 0
on the one hand; and by the induction hypothesis

A0(y)A1(y) . . . Ae−1(y) = A0(x′′)A1(x′′) . . . Ae−1(x′′)

on the other hand. Thus Ψ(e+ 1, x′′) holds and ∃x Ψ(e+ 1, x) is satisfied.

Case 2. G ∩ Ae is infinite. Then let x′′ be any element of G ∩ Ae with x′′ ≥ x′.
For all such x′′ the function f̃e,x′′ is the same and thus one can, without loss of

generality, assume that x′′ is large enough that g(y) > f̃e,x′′(y) for all y ≥ x′′

and x′′ > e+ 1. Now let n ∈M be arbitrary such that xn ≥ x′′. Then

A0(xn+1)A1(xn+1) . . . Axn
(xn+1) ≥lex A0(x′′)A1(x′′) . . . Ae(x

′′)0xn−e−1;

and thus,

A0(xn+1)A1(xn+1) . . . Ae(xn+1) = A0(x′′)A1(x′′) . . . Ae(x
′′).

As n ∈M was arbitrary with xn ≥ x′′ it follows that Ψ(e+1, x′′) holds and that
∃x Ψ(e+ 1, x) is satisfied. 3

Thus ∃x Ψ(e, x) holds for all e, and in particular for each e there is an x ∈ G
with Ae(y) = Ae(x) for all y ≥ x with y ∈ G. Thus COH is satisfied. ut

In fact, we can obtain the following stronger result.

Corollary 45. Over RCA0 + BΣ2, DOM implies COHW.

This corollary follows immediately from Theorem 44 and the following observa-
tion.

Proposition 46. Over RCA0 + DOM, COH implies COHW.

Proof. Let F be a weakly represented family of sets represented by A, let fe be
as in Definition 5, let E = {e : fe is total} and for all e ∈ E write Be for the set
whose characteristic function is fe.

For every e ∈ M , define a function f̃e which on input x outputs the small-
est z ∈ M such that either 〈e, x, 0, z〉 or 〈e, x, 1, z〉 is in A. It is easy to see

that {f̃e : e ∈ E} is a weakly represented family of functions. Then, by DOM,

there is a function g ∈ S dominating all functions f̃e, e ∈ E. Observe that then
{Ce : e ∈ M}, as defined by Ce = {x : ∃z ≤ g(x) [〈e, x, 1, z〉 ∈ A]}, is a uniform
family of sets.
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Let e ∈ M . If e ∈ E then Ce ⊆ Be by definition, and, as g dominates all f̃e
with e ∈ E, there is a b1 such that all x > b1 satisfy Ce(x) = Be(x). If, on the
other hand, e /∈ E then there is a b0 such that 〈e, x, 1, z〉 /∈ A for all x > b0 and
all z ∈M ; thus Ce is finite. Let b = b0 if e /∈ E, and let b = b1 otherwise.

Now, by COH, there is an infinite set D ∈ S such that, for every e ∈M , there
is a bound b′ satisfying that for all x, x′ > b′, if x, x′ ∈ D then Ce(x) = Ce(x

′).
Thus for all x, x′ > max(b, b′), if x, x′ ∈ D then Be(x) = Be(x

′). That is,
D witnesses that the requirements of COHW concerning F = {Be : e ∈ E} are
satisfied. As F was arbitrary, COHW is satisfied in general. ut

Note that a similar result also holds for WKL0 in place of DOM, that is, over
RCA0 +WKL0, COH implies COHW. The reason is that WKL0 proves that every
weakly represented family F of sets is contained in a uniformly represented
family G of sets, from which it follows that COH is equivalent to COHW.

Hirschfeldt [16, Open Question 9.18] asked if RCA0 + CADS implies COH.
Here CADS is the principle that whenever < ∈ S is a linear ordering on M then
there is an infinite set A ∈ S such that for every i ∈ A there is a k ∈M such that
either all j ∈ A satisfy k < j → i v j or all j ∈ A satisfy k < j → j < i. We now
show that RCA0+DOM ` CADS, and thus an affirmative answer to Hirschfeldt’s
question would also prove RCA0 + DOM ` COH. Note that RCA0 + DOM does
not imply the closely related principle SADS (Hirschfeldt [16, Definition 9.16]);
this is because SADS ` BΣ2 while DOM 0 BΣ2.

Theorem 47. Over RCA0, DOM implies CADS.

Proof. Let a linear ordering < ∈ S be given and define for each e ∈ M the
function fe via fe(i) = min{j ≥ i : e v j}. Note that fe is total iff there are
infinitely many j with e v j. Then F = {fe : fe total} forms a weakly represented
family and so all functions f ∈ F are dominated by a single function g ∈ S. Let

h(i) = max
v
{j : i ≤ j ≤ i+ g(i)}

and let A be the range of h. Then i ∈ A⇔ i ∈ {h(0), h(1), . . . , h(i)}.
Now let e be given. If there are infinitely many j with e ≤ j then, for almost

all i, there is a j ∈ {i, i+ 1, . . . , i+ g(i)} with e v j; it follows that e v h(i). If
there are only finitely many such j then h(i) < e for almost all i. Thus for each
e it holds that either almost all j ∈ A satisfy e v j or almost all j ∈ A satisfy
j < e.

As the choice of < was arbitrary, CADS holds. ut

8 DOM does not imply SRT2
2

We now construct an ω-model witnessing that DOM does not imply SRT2
2. We

require the following lemma.

Lemma 48. Let A be Martin-Löf random relative to Ω. Then A does not com-
pute any infinite subset of Ω or Ω.
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Proof. Without loss of generality, assume that A computes an infinite subset G
of Ω; the case Ω is symmetric. By Theorem 40 we have that Ω is Martin-Löf
random relative to A. Since G ≤T A, Ω is also Martin-Löf random relative to
G. Let (bi : i ∈ ω) be a strictly monotone listing of the elements of G. Then it is
easy to see that the sequence (Un : n ∈ ω) defined via

Un = [{σ ∈ {0, 1}bn+1 : σ(bi) = 1 for all 0 ≤ i ≤ n}]

is a G-Martin-Löf test covering Ω, contradiction. ut

Theorem 49. DOM does not imply SRT2
2.

Proof. We construct an ω-model of DOM + ¬SRT2
2. To achieve this, we will use

a result of Chong, Lempp and Yang [6] and Cholak, Jockusch and Slaman [5]
who proved that SRT2

2 is equivalent to the following principle D2
2:

For every ∆0
2 set G ⊆ ω there exists an infinite A ⊆ ω such that A ⊆ G

or A ⊆ G.

To ensure ¬SRT2
2 it is therefore enough to ensure ¬D2

2. To this end, for all n ∈ ω,

let An = Ω∅
′ ⊕Ω∅

′′ ⊕ . . .⊕Ω∅
(n+1)

, where ∅(i) is the i-th Turing jump for i ∈ ω.
Now let

S = {A ⊆ ω : A ≤T An for some n ∈ ω}

and letM = (ω, S,+, ·, 0, 1). As ∅′ =T Ω we have that Ω∅
′

is Martin-Löf random
relative to Ω, and by repeated application of Theorem 40 it follows that, for
any n ∈ ω, An is Martin-Löf random relative to Ω. By Lemma 48 we obtain
that no set in S computes an infinite subset of Ω or Ω. But since Ω is ∆0

2 this
implies ¬D2

2.
To see that DOM is satisfied by M let a weakly represented family F repre-

sented by A ≤T Ai for i ∈ ω large enough be given. Note that Ai+1 is high rela-
tive to Ai, and that it therefore computes a function g dominating all functions
computable from A, in particular g dominates all f ∈ F . As F was arbitrary,
this establishes DOM. ut

9 Restricted Π1
2-conservativeness of DOM over RCA0

In this section we will prove that given any restricted Π1
2-sentence ϕ,

if DOM + RCA0 ` ϕ, then RCA0 ` ϕ.

Here a formula ϕ is called a restricted Π1
2-sentence iff it is of the form

∀X [α(X)→ ∃Y [β(X,Y )]]

where X,Y are quantified variables ranging over the second order part of the
model in question, α is any arithmetical formula and β is a Σ0

3-formula. We begin
by introducing the following concepts.
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Definition 50. Given a structure M = (M,S,+,×, 0, 1, <) of second order
arithmetic and g ⊆ M , let Mg be the L2-structure (M,S ∪ {g},+,×, 0, 1, <)
and M[g] be the L2-structure (M,∆0

1(Mg),+,×, 0, 1, <) where

∆0
1(Mg) = {X ⊆M : X is ∆0

1 definable over Mg}.

Remark 51. By a result of Simpson [39, Lemma IX.1.8], for every L2-struc-
ture M and g ⊆ M , if Mg satisfies the basic axioms and IΣ1, then M[g] is a
model of RCA0.

Hirschfeldt [16, Proposition 7.16] proved that a statement of the form

∀X [ϑ(X)→ ∃Y [ψ(X,Y )]], (†)

where ϑ and ψ are arithmetic formulas, is restricted Π1
2-conservative over RCA0 iff

one can for every countable structureM = (M,S,+,×, 0, 1, <) and every X ∈ S
with M |= ϑ(X) find an extension N = (M,∆0

1(Mg),+,×, 0, 1, <) such that

– N |= IΣ1,
– N |= ψ(X, g),
– for every Σ3-formula ρ(Y,Z) whose free variables are exactly {Y, Z} and

every Z ∈ S, if N |= ∃Y [ρ(Z, Y )] then M |= ∃Y [ρ(Z, Y )].

Note that DOM is given by a Π1
2-formula of the form (†) where ϑ(X) states that

X represents a weakly represented family F of functions and ψ(X,Y ) states
that Y dominates every function in F . Thus we can use Hirschfeldt’s criterion
to prove the following theorem.

Theorem 52. DOM is restricted Π1
2-conservative over RCA0.

Proof. We use the coinfinite extension method of Kleene and Post [26], La-
combe [28] and Spector [40] as described by Odifreddi [35, Theorem V.4.3] to
prove the result; these methods will be adjusted to work on countable models
of arithmetic. The function g above will be constructed by an induction over
the natural numbers for which we use a list covering the countable set of re-
quirements listed below; furthermore, we use that there is a cofinal ascending
sequence a0, a1, . . . of elements of M and that every ascending sequence b0, b1, . . .
with bn ≥ an for all n is also cofinal. The following invariant will be maintained
at all stages n:

At the beginning of stage n, the function g is defined for all 〈x, y〉 with x < bn
and its extension g̃ is in S where g̃ takes the value 0 on those places where g is
not yet defined. Furthermore, when bn+1 is chosen to satisfy the requirement, it
is done in such a way that max{bn, an+1} ≤ bn+1.

The ideas of this construction combine the original result of Spector as pre-
sented by Odifreddi with ideas of Hirschfeldt [16, Chapters 6 and 7]. The require-
ments used are the three items below; they are stated together with a description
of how they are realised at the stage n where they get attention; and as there
are only countably many of these (all parameters range over S and M), there is
a non-effective enumeration of these conditions by natural numbers.
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– For all X ∈ S and Turing reductions F ∈ S and u ∈M , if F g⊕X is total and
{0, 1}-valued and for all v there is an w with F g⊕X(u, v, w) = 1 then there
is an h ∈ S with Fh⊕X being total and {0, 1}-valued and for all v there is
a w with Fh⊕X(u, v, w) = 1.
This requirement is satisfied as follows: Let c0 = 0 and η0 be the everywhere
undefined function; for m = 0, 1, . . . we search for a finite function ηm+1 and
a value cm+1 such that the following conditions hold:

◦ cm+1 > m;
◦ the domain of ηm+1 is {〈x, y〉 : x, y < cm+1} and ηm+1 can be coded

using an element of M ;
◦ all x, y < cm satisfy ηm+1(〈x, y〉) = ηm(〈x,m〉);
◦ all x < min{bn, cm+1} and all y < cm+1 satisfy ηm+1(〈x, y〉) = g(〈x, y〉);
◦ F ηm+1⊕X(u,m,w) = 1 for some w < cm+1 without F querying the first

component of the join ηm+1 ⊕X outside the domain of ηm+1;
◦ F ηm+1⊕X(ũ, ṽ, w̃) terminates with a value from {0, 1} without querying

outside the domain of ηm+1 for all ũ, ṽ, w̃ < cm.

By IΣ1 there are only two cases.

Case 1. The construction goes through for all m yealding in the limit a to-
tal extension h of the part of g constructed so far such that Fh⊕X is total
and {0, 1}-valued and the value u satisfies that for every v there is a w with
Fh⊕X(u, v, w) = 1. As the part of g constructed prior to stage n is the restric-
tion of a function in S to a domain in S, the so constructed h is also in S. In
this case the requirement is satisfied and one selects bn+1 = max{an+1, bn}
and defines for all x with bn ≤ x < bn+1 and all y that g(〈x, y〉) = 0.

Case 2. The construction progresses until it reaches an m for which the
extension ηm+1 cannot be found; the existence of such an m in the case
that not all m are used follows from IΣ1. Now any common extension g̃
of the part of g built so far and of ηm found so far satisfies that either
F g̃⊕X is undefined or above 2 for some inputs (ũ, ṽ, w̃) or v = m satisfies
that there is no w with F g̃⊕X(u, v, w) = 1. Now one extends g as follows:
bn+1 = max{an+1, bn, cm} and for all x < bn+1 and all y ∈M one defines if
x < bn then g(〈x, y〉) is defined as done previously else if x < cm and y < cm
then g(〈x, y〉) = ηm(〈x, y〉) else g(〈x, y〉) = 0.

Note that in both cases, one extends the function with finite case distinction
between finite functions codable in S and existing functions which are re-
strictions of functions in S to a domain in S; then the newly extended part
of g is also a restriction of a function in S to the domain {〈x, y〉 : x < bn+1},
which is a set in S.

– For all X ∈ S and Turing reductions F ∈ S, the range of F g⊕X(M) has a
minimum.
This requirement is satisfied as follows: Let c0 = 0 and η0 be the everywhere
undefined function; for m = 0, 1, . . . we search for a finite function ηm+1 and
a value cm+1 such that the following conditions hold:

◦ cm+1 > m;



Weakly Represented Families in Reverse Mathematics 21

◦ the domain of ηm+1 is {〈x, y〉 : x, y < cm+1} and ηm+1 can be coded
using an element of M ;

◦ all x, y < cm satisfy ηm+1(〈x, y〉) = ηm(〈x,m〉);
◦ all x < min{bn, cm+1} and all y < cm+1 satisfy ηm+1(〈x, y〉) = g(〈x, y〉);
◦ if m = 0 then v = F ηm+1⊕X(w) is defined for some w; else there is a w

such that F ηm+1⊕X(w) is defined and bounded by v−m with the v from
the case m = 0; furthermore, the computation of F ηm+1⊕X(w) does not
query any elements of the ηm+1-part of the join ηm+1 ⊕X except those
where ηm+1 is defined.

By IΣ1 this construction runs only up to some m; this m is at most v for
the v chosen at m = 0. The reason for this is that afterwards the requirement
would be that there is a w for which F ηm+1⊕X(w) is defined and negative;
however, this is not allowed as the outputs of the function are all in M . So
now let m be the maximum number for which ηm is defined, this number
exists by IΣ1. Then any total common extension g̃ of the part of g constructed
so far and of ηm satisfies that the so defined function does not take values
below v −m while the value v −m exists by the existence of ηm.
Let bn+1 = max{an+1, bn, cm} and define that g(〈x, y〉) with bn ≤ x < bn+1

takes the value ηm(〈x, y〉) in the case that x, y < cm and takes the value 0
otherwise. The so chosen extension is again the restriction of a function in S
to the domain {〈x, y〉 : x < bn+1} which is also a set in S. Furthermore,
the function computed by F from g takes a minimum and so this necessary
requirement towards satisfying IΣ1 in the model M∪ {g} is satisfied.

– For all f ∈ S there is a x ∈M such that ∀y [g(〈x, y〉) = f(y)].
This is the easiest requirement to satisfy: If f ∈ S is the function in question,
then we select bn+1 = max{an+1, bn + 1} and define g(〈x, y〉) = f(y) for all
y ∈M and all x with bn ≤ x < bn+1.

The last requirement ensures that g codes a uniform family which contains all
functions contained in any weakly represented family inM. Thus it follows that
the function h(y) = 1 + (

∑y
x=0 g(〈x, y〉)) dominates every weakly represented

family in the modelM and h is clearly a function inM∪{g}. It follows that the
preconditions of Proposition 7.16 by Hirschfeldt [16] are satisfied and therefore
DOM is restricted Π1

2-conservative over RCA0. ut

Theorem 53. DOM is not Π1
1-conservative over RCA0 + BΣ2.

Proof. Hölzl, Jain and Stephan [19, Theorem 20] showed that over RCA0 +BΣ2,
DOM implies IΣ2. So we have that DOM + RCA0 + BΣ2 ` IΣ2, while it is
well-known that RCA0 + BΣ2 0 IΣ2. But since IΣ2 can be formalised by a
Π1

1-statement, DOM is not Π1
1-conservative over RCA0 + BΣ2. ut

This result stands in contrast to the result of Chong, Slaman and Yang [7] that
COH is Π1

1-conservative over RCA0 +BΣ2. Furthermore, as DOM implies AVOID,
MEET and BI, we obtain the following immediate consequence.

Corollary 54. The following are restricted Π1
2-conservative over RCA0.
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(a) AVOID
(b) MEET
(c) BI

Finally, the results in this section provide another proof of Theorem 49; the
argument being that RCA0 +DOM+¬BΣ2 has a model; and that such a model
cannot satisfy SRT2

2, as this would contradict the result of Cholak, Jockusch and
Slaman [5] that RCA0 + SRT2

2 ` BΣ2.

10 Almost Disjointness and Independence

In this section we prove that in ω-models MAD and MIND coincide with the
negations of previously known principles.

Theorem 55. An ω-model satisfies MAD iff it does not satisfy DOM.

Proof. (⇒): Let F be a weakly represented family of sets represented by A ∈ S
that is almost disjoint. Suppose that DOM holds; we will show that this im-
plies ¬MAD.

Assume without loss of generality that for the characteristic function f of
every set in F there is a unique e ∈ ω such that f is weakly represented by Ae
(where Ae is as in Definition 5). Indeed, this can be achieved by replacing A
with a set A′ derived from it, where A′ and A′e = {n : 〈e, n〉 ∈ A′} are such that
whenever f ′e (the function weakly represented by A′e) looks identical to f ′d for
some d < e, the enumeration of elements into A′e is suspended; this way, should
there indeed be a d < e with fe = fd in the limit, then f ′e will become non-total,
and A′e will not weakly represent any function in F .

As a consequence of the previous assumption, if, for some d 6= e, Ad and Ae
weakly represent the characteristic functions of sets F ∈ F and G ∈ F respec-
tively, then F ∩G is finite.

Let (ϕAe : e ∈ ω) be an enumeration of all A-recursive functions.

Claim. There is a function g ∈ S that dominates every A-recursive function in
the following sense: For every total ϕAe and almost all n it holds that

g(n+ 1) > ϕAe (g(n)).

Proof. Consider the weakly represented family of all A-recursive functions, and
apply DOM to obtain a function ĝ dominating it. Without loss of general-
ity, assume that ĝ is strictly increasing, let g(0) = 0 and define for all n
that g(n+ 1) = ĝ(g(n)). 3

Let h(x, n) be the least number d such that either ϕAd (x)[g(n+2)]↓ = 1 or d = n.
Let B be the set consisting of numbers bn ∈ ω, n ∈ ω, with g(n) < bn < g(n+ 1)
and h(bn, n) ≥ h(x, n) for all x with g(n) < x < g(n+ 1).

Informally, for an element x, the value h(x) tells us that x does not seem to
show up in those sets that have characteristic functions who have an A-recursive
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index up to h(x); of course this can only be determined given an enumeration
timebound, which is provided by the dominating function g here. Then B picks
elements where this number is as large as possible.

More formally, note that by the choice of g, if ϕAd coincides with the char-
acteristic function fe of a set in F , then for almost all n there is an x with
g(n) < x < g(n + 1) such that fe(x)[g(n+ 2)]↓ = 1 and, due to the almost dis-
jointness, for all d < e either fd(x)↑ or fd(x)↓ = 0. As by construction B consists
only of numbers of this type, for almost all n it holds that bn /∈ Ad for d < e
and therefore the set B has finite intersection with every C ∈ F . Thus MAD is
not satisfied.

(⇐): LetM = (ω, S,+, ·, 0, 1) be an ω-model of ¬DOM. We assume without loss
of generality that S contains no high set; otherwise carry out the construction
below relative to an oracle relative to which no high set in S exists.

The fact that we don’t know which indeces e describe total recursive func-
tions ϕe is a complication in the construction that follows. To circumvent this
issue, we take advantage of the possibilities that the concept of weakly repre-
sented families offer, namely that partial information about functions is ignored
when defining such a family; only total functions are considered a member of
the family. Using this, we build a recursive numbering of partial-recursive func-
tions such that the total functions appearing in it are all {0, 1}-valued and when
interpreted as characteristic functions of sets, the collection of these sets is a
maximal almost disjoint family.

Let (ϕe : e ∈ ω) be an enumeration of all recursive functions. First we
build the uniformly recursive helper procedures ψc0,c1,...,ce for all e ∈ ω with
cd ∈ {0, 1, . . . ,∞} for d ≤ e. We call (c0, c1, . . . , ce) true parameters if, for
all d ≤ e, cd is the minimal i such that ϕd(i)↑ if such an i exists, and cd =∞ if
ϕd is total.

The procedure ψc0,c1,...,ce has three states: wait, success, and aborted. When
we define the enumeration of the characteristic function of Ae below, we will only
enumerate a new function value whenever ψc0,c1,...,ce is in state success. The idea
is that this will only happen infinitely often, when (c0, c1, . . . , ce) are the true
parameters. If (c0, c1, . . . , ce) are not true parameters, then ψc0,c1,...,ce will either
be stuck in state wait forever, or it will enter state aborted and stay in it forever.
Then the true parameters will be the only parameters used to define Ae.

To achieve what we just described, we proceed as follows: ψc0,...,ce starts in
state wait and runs the following e+ 1 parallel procedures:

– For all d ≤ e, the computations ϕd(cd), d ≤ e, are run in parallel. If one of
them ever terminates, then by definition (c0, c1, . . . , ce) are not true parame-
ters. Then ψc0,...,ce stops all computations, enters state aborted, and remains
in this state permanently.

– In a single procedure, all computations ϕd(c) with d ≤ e and c < cd are run
sequentially and in order ascending with 〈d, c〉. While one of the computa-
tions runs, ψc0,...,ce is in state wait. Every time one of the computations ϕd(c)
terminates, ψc0,...,ce enters state success. If (d, c) was the last pair of param-
eters as above (which can only happen if all cd, d ≤ e, are finite) then remain
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in state success permanently. Otherwise enter state wait again, and continue
with the next pair (d′, c′), that is, with the smallest pair as above such that
〈d′, c′〉 > 〈d, c〉.

Note that this arrangement ensures that ψc0,...,ce is in state success at infinitely
many stages if and only if (c0, c1, . . . , ce) are the true parameters.

We can now describe how to produce a maximal almost disjoint family. In
parallel, for all e ∈ ω and all possible sets of parameters (c0, c1, . . . , ce) we run
the following procedure.5

Run ψc0,...,ce step by step.
At every stage, check if ψc0,...,ce is currently in state success.
If so, let m be the smallest number not in A0∪A1∪ . . .∪Ae−1, and check
whether

m = n+ ϕe(0) + ϕe(1) + . . .+ ϕe(n) for some n. (∗)

If not, enumerate m into Ae.

Note that if (c0, c1, . . . , ce) are the true parameters, then checking (∗) is recursive,
and the procedure never gets stuck. This finishes the construction.

We need to prove that the weakly represented family {An : n ∈ ω} constructed
by this procedure is maximal almost disjoint. First note that for each e ∈ ω
the complement of A0 ∪ . . . ∪ Ae is infinite and contains at most n elements
below ϕe(n). Furthermore, Ae is disjoint with all Ad for d < e. As a consequence,
{An : n ∈ ω} is almost disjoint.

It remains to show that {An : n ∈ ω} is also maximal almost disjoint. To see
this let B be an infinite non-high set. Then there is a recursive function ϕe such
that, for infinitely many n, there are more than 2n elements of B below ϕe(n).
It follows that the intersection of B with A0 ∪ . . . ∪ Ae is infinite and therefore
B ∩Ad is infinite for some d ≤ e. This completes the proof. ut

Theorem 56. An ω-model satisfies MIND iff it does not satisfy BI.

Proof. (⇒): As before, for a set C ⊆ ω, let us write C0 for C and C1 for ω \C.
Let a weakly represented family F of sets represented by A be given. Also

fix any collection {A0, . . . , An−1} ⊆ F and any string σ ∈ 0, 1n, as well as a

set B which is biimmune relative to A. Observe that the set Â =
⋂
i<nA

σ(i)
i is

A-recursive. Then B’s biimmunity relative to A implies that both Â ∩ B and
Â ∩B are infinite.

As {A0, . . . , An−1} was arbitrary, it follows that F ∪{B} is still an indepen-
dent family, which contradicts the assumption that F is maximal independent.

5 Note that to simplify notation, we do not explicitly define total characteristic func-
tions of the sets Ae, e ∈ ω, or the enumeration of a set that represents these functions
as a weakly represented family. But since the elements of every Ae are enumerated
in increasing order by the given procedure, it is easy to convert it into one defining
the enumeration of such a set.
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(⇐): Similarly to the proof of the previous theorem, we work with lists of
parameters where true parameters define sets in the maximal independent family
that we need to construct. So assume that an ω-modelM = (ω, S,+, ·, 0, 1) and a
set A ∈ S are given such that no set B ∈ S is biimmune relative to A; to simplify
notation, we assume that A is recursive; otherwise carry out the construction
relative to A.

In the following, a stream is an infinite sequence of natural numbers in
strictly ascending order. Each stream will be indexed with a string; the range
of streams xσ, xτ is disjoint if σ, τ are incomparable as strings, and the range
of xσ is a superset of the range of xτ when σ is a prefix of τ .

We begin the construction with the initial stream xε which is the sequence
of all natural numbers, that is, xεn = n for all n ∈ ω. We now describe how to
define the streams xσ, for strings σ, and then we argue that the set {Ee : e ∈ ω}
with

Ee = {m : ∃σ ∈ {0, 1}e ∃n [m = xσ1n ]}

is a weakly represented family that is maximal independent. To define the
streams xσ, for strings σ, proceed as follows for all e ∈ ω:

Let Re(n) be defined and let it equal ϕe(n) iff the values ϕe(0), . . . , ϕe(n)
are defined and in {0, 1}; let Re(n) be undefined if there is m ≤ n where ϕe(m)
is undefined or defined and at least 2. We define a function ηe : {0, 1}e → {0, 1}
as follows:

(a) If Re is total and there exist both infinitely many n ∈ range(xσ) such that
Re(n) = 0 and infinitely many n ∈ range(xσ) such that Re(n) = 1, then let,
for a = 0, 1 and all n ∈ ω, xσan be the n-th element m of xσ with Re(m) = a.
Informally this means that xσ is split into xσ0 and xσ1 according to the
values of Re. Furthermore, let ηe(σ) = 1.

(b) Else let xσ0n = xσ2n and xσ1n = xσ2n+1 for all n ∈ ω. Informally this means
that xσ is split evenly into xσ0 and xσ1. Furthermore, let ηe(σ) = 0.

Note that ηe stores the information for which σ of length e cases (a) and (b)
applied, respectively. This finishes the construction.

As an auxiliary notion need for the verification we define

td as the maximum n such that n = 0 or one can find a τ ∈ {0, 1}d and
xτi , x

τ
j with ηd(τ) = 0, n = min{xτi , xτj }, Rd(xτi ) = 0 and Rd(x

τ
j ) = 1.

Note that for a given τ ∈ {0, 1}d the statement ηd(τ) = 0 means that case (b)
applied to τ above, and that Rd(k) is the same value for all k > td with
k ∈ range(xτ ) such that Rd(k) is defined. The same holds for all other τ of
length d with ηd(τ) = 0.

The verification consists of establishing the following two claims.

Claim. {Ee : e ∈ ω} is maximal independent.
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Proof. Note that for σ ∈ {0, 1}e, range(xσ) is the intersection of all Ed with d < e
and σ(d) = 1 and all Ed with d < e and σ(d) = 0. Further note that by
construction range(xσ) has infinite cardinality. Thus {Ee : e ∈ ω} is independent.

To see that it is also maximal independent, consider any set B. As B cannot
be biimmune it either has an infinite recursive subset or B has an infinite recur-
sive subset; let e be such that Re is the characteristic function of this set which
we also denote Re, slightly abusing notation. Now, for some σ ∈ {0, 1}e, xσ has
infinite intersection with Re and therefore by construction almost all elements
in range(xσ1) are also elements of Re.

So for the Boolean combination of E0, E1, . . . , Ee that equals range(xσ1) we
have that it either equals an infinite subset of B or an infinite set disjoint with B.
Thus {Ee : e ∈ ω} ∪ {B} cannot be independent. 3

Claim. {Ee : e ∈ ω} is a weakly represented family.

Proof. Recall that the parameters ηe, e ∈ ω, store for which σ of length e which
of the two cases (a) and (b) was applied during the construction. The following
construction is described for arbitrary parameter sets (η̃0, η̃1, . . . , η̃e, s). As in the
proof of Theorem 55, for each e, the construction below will only define a set Ee
if (η̃0, η̃1, . . . , η̃e) = (η0, η1, . . . , ηe) and if s is a sufficiently large timebound. For
all other parameter sets, the construction will get stuck eventually.

More formally, let c = (η̃0, η̃1, . . . , η̃e, s) be given, where η̃d ∈ {0, 1}2
d

for all
d ≤ e and let s ∈ ω. We describe how to inductively construct streams x̃σ for
each string σ based on c:

(a) If η̃e(σ) = 1, then let, for a = 0, 1 and all n ∈ ω, x̃σan be the n-th element m
of x̃σ with Re(m) = a.

(b) Else let x̃σ0n = x̃σ2n and x̃σ1n = x̃σ2n+1 for all n ∈ ω.

In other words, we try to mimic the previous construction, hoping that c is a set
of true parameters. Now let

t̃d be the maximum n ≤ s such that either n = 0 or such that one can
find within time s some τ ∈ {0, 1}d and some x̃τi , x̃τj with η̃d(τ) = 0 and
n = min{x̃τi , x̃τj } and such that Rd(x̃

τ
i ), Rd(x̃

τ
j ) become defined within

time s and Rd(x̃
τ
i ) 6= Rd(x̃

τ
j ).

We now need to define an algorithm that uniformly from c produces a partial
function Fc such that on the one hand, if for all d ≤ e, η̃d = ηd, then for
sufficiently large s, t̃d = td for all d ≤ e and Fc is the characteristic function
of Ee; and such that on the other hand, if for some d ≤ e, η̃d 6= ηd or t̃d 6= td,
then Fc is only defined on finitely many inputs. The algorithm to compute Fc(n)
is as follows:

(1) Compute x̃σ0 , . . . , x̃
σ
n for all |σ| ≤ e+ 1.

(2) Determine the unique σ ∈ {0, 1}e+1 such that there is an m with x̃σm = n.
(3) Search for n computation steps for a d and τ ∈ {0, 1}d such that η̃d(τ) = 0

and for some x̃τi , x̃
τ
j > t̃d with Rd(x̃

τ
i ) ↓= 0 and Rd(x̃

τ
j ) ↓> 0. (If we find

these, then η̃d must be wrong, or t̃d < td.)
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(4) If the computations in (1) terminate, the search in (2) is successful, and the
search in (3) is unsuccessful, then output Fc(n) = σ(e), else let Fc(n) be
undefined.

We verify that this algorithm behaves as required. First assume that all η̃d = ηd.
Then all x̃σ with |σ| ≤ e + 1 are equal to xσ. Furthermore, for large enough s
the definition of t̃d ensures that t̃d = td. Then the algorithm above produces a
total function Fc and by (4) we have that Fc is the characteristic function of Ee.

If, on the other hand, there is a d such that either η̃d 6= ηd or t̃d < td then let
d be the least such d. Note that then for σ with |σ| ≤ d, it holds that x̃σ = xσ.
We argue that Fc is not total; there are several cases to consider.

– If ηd(τ) = 1 and η̃d(τ) = 0 for some τ ∈ {0, 1}d, then there are infinitely
many elements of xτ for which Re takes the value 1 and infinitely many
for which Re takes the value 0. However, as η̃d(τ) = 0, for large enough n,
some of these elements will be found in step (3) of the above algorithm, and
Fc(n) will be undefined.

– If ηd(τ) = 0 and η̃d(τ) = 1 for some τ ∈ {0, 1}d, then by definition the
streams x̃τ0 and x̃τ1 are defined from x̃τ = xτ by splitting according to the
values of Rd; however, since ηd(τ) = 0, one of x̃τ0 and x̃τ1 will then only
contain finitely many elements. Then for sufficiently large n the algorithm
will get stuck in step (1) when calculating Fc(n).

– If t̃d < td, and the two previous cases do not apply, then x̃τa = xτa for all
τ ∈ {0, 1}d and a ∈ {0, 1}, and for sufficiently large n, the algorithm will in
step (3) find the values x̃τi , x̃

τ
j > t̃d and Fc(n) will be undefined.

Thus, the construction above only produces total functions Fc if

c = (η0, η1, . . . , ηe, s)

for a sufficiently large s ∈ ω; and in this case Fc is the characteristic function
of Ee. As the construction is uniform in c, it is easy to see that {Ee : e ∈ ω} is
a weakly represented family. 3

This completes the proof of Theorem 56. ut
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